
TXSeries™

for

Multiplatforms

Encina

Object-Oriented

Programming

Guide

Version

5.1

SC09-4478-05

���

TXSeries™

for

Multiplatforms

Encina

Object-Oriented

Programming

Guide

Version

5.1

SC09-4478-05

���

Note

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

75.

Sixth

Edition

(March

2004)

This

edition

replaces

SC09-4478-04.

Order

publications

through

your

IBM

representative

or

through

the

IBM

branch

office

serving

your

locality.

©

Copyright

International

Business

Machines

Corporation

1999,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

Figures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

Tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

About

this

book

.

.

.

.

.

.

.

.

.

.

. ix

Who

should

read

this

book

.

.

.

.

.

.

.

.

. ix

Document

organization

.

.

.

.

.

.

.

.

.

. ix

Related

information

.

.

.

.

.

.

.

.

.

.

.

. x

Conventions

used

in

this

book

.

.

.

.

.

.

.

. x

How

to

send

your

comments

.

.

.

.

.

.

.

. xi

Chapter

1.

What

is

Encina++?

.

.

.

.

. 1

DCE

support

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Client

and

server

support

interfaces

.

.

.

.

. 1

Object-oriented

access

interfaces

.

.

.

.

.

.

. 1

Client

and

server

support

.

.

.

.

.

.

.

.

.

. 2

C++

clients

and

servers

.

.

.

.

.

.

.

.

.

. 2

Encina++

terminology

.

.

.

.

.

.

.

.

.

.

. 2

Chapter

2.

The

Encina++

programming

model

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

Object-oriented

distributed

computing

.

.

.

.

.

. 5

Client/object

programming

.

.

.

.

.

.

.

.

. 6

Communications

.

.

.

.

.

.

.

.

.

.

.

.

. 6

Application

initialization

and

management

.

.

.

. 7

Transaction

processing

.

.

.

.

.

.

.

.

.

.

. 7

Transactional

and

nontransactional

threads

.

.

.

. 7

Chapter

3.

Developing

distributed

applications

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Overview

of

application

development

.

.

.

.

.

. 9

Writing

client

applications

.

.

.

.

.

.

.

.

.

. 9

Initializing

a

client

application

.

.

.

.

.

.

. 9

Binding

to

remote

objects

.

.

.

.

.

.

.

.

. 10

Terminating

a

client

application

.

.

.

.

.

. 10

Writing

server

applications

.

.

.

.

.

.

.

.

. 11

Creating

a

server

instance

.

.

.

.

.

.

.

. 12

Registering

resources

.

.

.

.

.

.

.

.

.

. 12

Accessing

relational

databases

.

.

.

.

.

.

. 13

Initializing

a

server

.

.

.

.

.

.

.

.

.

.

. 13

Creating

server

objects

.

.

.

.

.

.

.

.

.

. 14

Listening

for

RPCs

.

.

.

.

.

.

.

.

.

.

. 14

Terminating

a

server

.

.

.

.

.

.

.

.

.

. 14

Handling

errors

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Throwing

exceptions

.

.

.

.

.

.

.

.

.

. 15

Catching

exceptions

.

.

.

.

.

.

.

.

.

. 16

Chapter

4.

Developing

Encina++/DCE

applications

.

.

.

.

.

.

.

.

.

.

.

. 17

Introduction

to

Encina++/DCE

.

.

.

.

.

.

.

. 17

Defining

the

interface

.

.

.

.

.

.

.

.

.

.

. 17

Using

TIDL

with

Encina++

.

.

.

.

.

.

.

. 18

Making

operations

transactional

.

.

.

.

.

. 19

Generating

stub

files

.

.

.

.

.

.

.

.

.

. 19

Binding

to

remote

objects

.

.

.

.

.

.

.

.

.

. 20

Developing

client

applications

.

.

.

.

.

.

.

. 23

Building

clients

.

.

.

.

.

.

.

.

.

.

.

. 23

Running

clients

.

.

.

.

.

.

.

.

.

.

.

. 24

Developing

server

applications

.

.

.

.

.

.

.

. 24

Implementing

manager

functions

.

.

.

.

.

. 24

Creating

implementation

objects

.

.

.

.

.

. 26

Building

servers

.

.

.

.

.

.

.

.

.

.

.

. 28

Running

servers

.

.

.

.

.

.

.

.

.

.

.

. 29

Binding

by

object

reference

.

.

.

.

.

.

.

.

. 29

Writing

the

factory

interface

.

.

.

.

.

.

.

. 30

Writing

functions

to

create

and

delete

objects

.

. 31

Supporting

factories

in

the

server

program

.

.

. 31

Supporting

factories

on

the

client

.

.

.

.

.

. 32

Using

exceptions

in

Encina++/DCE

.

.

.

.

.

. 33

Defining

exceptions

.

.

.

.

.

.

.

.

.

.

. 33

Throwing

exceptions

.

.

.

.

.

.

.

.

.

. 34

Catching

exceptions

.

.

.

.

.

.

.

.

.

. 34

Signal

handling

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Naming

in

Encina++

Toolkit

applications

.

.

.

. 36

Using

Toolkit

mode

with

CDS

.

.

.

.

.

.

. 36

Using

Toolkit

mode

without

CDS

.

.

.

.

.

. 36

Chapter

5.

Transaction

processing

overview

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

Introduction

to

Transactional-C++

.

.

.

.

.

.

. 39

Introduction

to

the

Encina

Object

Transaction

Service

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

Transaction-demarcation

models

.

.

.

.

.

. 40

Exceptions

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

Chapter

6.

Transaction

processing

with

Transactional-C++

.

.

.

.

.

.

.

.

.

. 41

Creating

transactions

.

.

.

.

.

.

.

.

.

.

. 41

Nesting

transactions

.

.

.

.

.

.

.

.

.

.

. 42

Suspending

and

resuming

transactions

.

.

.

.

. 44

Getting

the

identity

of

a

transaction

.

.

.

.

.

. 45

Checking

transaction

status

.

.

.

.

.

.

.

.

. 46

Aborting

transactions

.

.

.

.

.

.

.

.

.

.

. 47

Using

abort

codes

.

.

.

.

.

.

.

.

.

.

. 47

Using

abort

strings

.

.

.

.

.

.

.

.

.

.

. 48

Formatting

abort

reasons

.

.

.

.

.

.

.

.

. 49

Using

AbortReason

objects

.

.

.

.

.

.

.

. 50

Using

exceptions

.

.

.

.

.

.

.

.

.

.

. 52

Getting

information

about

aborted

transactions

.

. 52

Chapter

7.

Transaction

processing

with

OMG

OTS

for

Encina++

.

.

.

.

.

.

. 55

Using

OTS

in

DCE

.

.

.

.

.

.

.

.

.

.

.

. 55

Using

the

implicit

model

of

transaction

processing

55

Beginning

and

ending

transactions

.

.

.

.

. 56

Nesting

transactions

.

.

.

.

.

.

.

.

.

. 56

Aborting

transactions

.

.

.

.

.

.

.

.

.

. 57

©

Copyright

IBM

Corp.

1999,

2004

iii

Suspending

and

resuming

transactions

.

.

.

. 58

Checking

transaction

status

.

.

.

.

.

.

.

. 58

Using

the

explicit

model

of

transaction

processing

59

Committing

or

rolling

back

a

transaction

.

.

. 59

Other

functions

for

explicitly

managing

transactions

.

.

.

.

.

.

.

.

.

.

.

.

. 60

Interactions

between

Tran-C++

and

OTS

interfaces

61

Chapter

8.

Using

threads

.

.

.

.

.

.

. 63

Using

nontransactional

threads

.

.

.

.

.

.

.

. 63

Using

transactional

threads

.

.

.

.

.

.

.

.

. 64

Creating

concurrent

transactional

threads

.

.

. 64

Creating

concurrent

transactions

.

.

.

.

.

. 65

Chapter

9.

Diagnostics

.

.

.

.

.

.

.

. 69

Tracing

applications

.

.

.

.

.

.

.

.

.

.

. 69

Dumping

the

application

state

.

.

.

.

.

.

.

. 69

Error

and

warning

messages

.

.

.

.

.

.

.

. 70

Appendix.

Compilation

issues

.

.

.

.

. 71

TIDL

and

IDL

compilation

.

.

.

.

.

.

.

.

. 71

C++

header

and

library

files

.

.

.

.

.

.

.

.

. 71

Header

files

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Library

files

.

.

.

.

.

.

.

.

.

.

.

.

. 72

Compiler

and

linker

options

.

.

.

.

.

.

.

.

. 73

Other

compilation

issues

.

.

.

.

.

.

.

.

.

. 73

Renaming

the

abort

macro

.

.

.

.

.

.

.

. 74

Checking

for

runtime

errors

.

.

.

.

.

.

.

. 74

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

Trademarks

and

service

marks

.

.

.

.

.

.

.

. 76

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

iv

TXSeries™:

Encina

Object-Oriented

Programming

Guide

||
||
|
||

|

|

Figures

1.

Distributed

object

computing

.

.

.

.

.

.

. 5

2.

Simple

mapping

of

a

DCE

interface

to

a

C++

class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

3.

Binding

to

an

implementation

object

.

.

.

. 7

4.

Example

of

initializing

an

Encina

client

10

5.

Example

of

initializing

an

Encina

server

11

6.

Registering

a

resource

with

an

Encina

server

12

7.

Throwing

a

user-defined

exception

.

.

.

.

. 15

8.

Catching

exceptions

in

Encina++

.

.

.

.

. 16

9.

Encina++/DCE

client

and

server

stub

classes

19

10.

Sample

TIDL

declaration

for

transactional

operations

.

.

.

.

.

.

.

.

.

.

.

.

. 19

11.

Generating

Encina++/DCE

client

and

server

stub

files

.

.

.

.

.

.

.

.

.

.

.

.

. 20

12.

Example

of

binding

a

client

to

any

remote

implementation

object

that

offers

a

particular

interface

.

.

.

.

.

.

.

.

.

.

.

.

. 21

13.

Example

of

binding

a

client

to

a

specific

implementation

object

.

.

.

.

.

.

.

.

. 22

14.

Example

of

binding

a

client

to

an

implementation

object

on

a

specific

server

.

. 22

15.

Building

Encina++/DCE

clients

.

.

.

.

.

. 23

16.

Server

class

hierarchy

.

.

.

.

.

.

.

.

. 25

17.

Implementing

the

manager

functions

of

the

account

interface

.

.

.

.

.

.

.

.

.

.

. 25

18.

Creating

an

implementation

object

for

the

accountMgr

class

.

.

.

.

.

.

.

.

.

.

. 26

19.

Creating

an

implementation

object

for

the

accountMgr

class

with

UUID

specified

.

.

. 27

20.

Building

Encina++/DCE

servers

.

.

.

.

. 29

21.

An

example

factory

interface

definition

30

22.

Example

of

a

function

to

create

an

object

31

23.

Example

of

a

function

to

delete

an

object

31

24.

Declaring

the

factory

object

in

the

server

program

.

.

.

.

.

.

.

.

.

.

.

.

. 32

25.

Requesting

and

deleting

server

objects

.

.

. 32

26.

Binding

by

object

reference

.

.

.

.

.

.

. 33

27.

Sample

TIDL

declaration

for

a

user-defined

exception

.

.

.

.

.

.

.

.

.

.

.

.

. 34

28.

Throwing

Encina++

system

exceptions

.

.

. 34

29.

Catching

exceptions

in

Encina++

.

.

.

.

. 34

30.

Catching

Encina++

exceptions

by

class

.

.

. 35

31.

Getting

a

reference

to

an

exception

object

35

32.

Creating

a

transaction

by

using

the

transaction

construct

.

.

.

.

.

.

.

.

.

.

.

.

. 41

33.

Creating

a

subtransaction

.

.

.

.

.

.

.

. 43

34.

Creating

a

nested

top-level

transaction

.

.

. 44

35.

Suspending

a

transaction

.

.

.

.

.

.

.

. 45

36.

Resuming

a

suspended

transaction

.

.

.

.

. 45

37.

Getting

the

identity

of

a

transaction

in

different

contexts

.

.

.

.

.

.

.

.

.

.

. 46

38.

Example

definition

for

abort

codes

.

.

.

.

. 48

39.

Example

of

aborting

with

an

abort

code

48

40.

Example

of

aborting

with

a

string

.

.

.

.

. 48

41.

Defining

an

abort

code

and

format

UUID

49

42.

Example

function

for

formatting

an

abort

reason

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

43.

Example

of

registering

a

formatting

function

50

44.

Example

of

aborting

with

a

formatted

abort

code

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

45.

Example

class

definition

for

specializing

abort

reasons

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

46.

Example

of

instantiating

a

specialized

abort

reason

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

47.

Example

of

aborting

with

a

specialized

abort

reason

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

48.

Example

of

aborting

with

an

exception

52

49.

Getting

abort

reason

information

.

.

.

.

. 53

50.

Beginning

and

ending

an

OTS

transaction

in

Encina++/DCE

.

.

.

.

.

.

.

.

.

.

. 56

51.

Creating

a

nested

OTS

transaction

.

.

.

.

. 57

52.

Aborting

an

OTS

transaction

.

.

.

.

.

.

. 57

53.

Suspending

and

resuming

an

OTS

transaction

58

54.

Committing

and

rolling

back

a

transaction

in

Encina++/DCE

.

.

.

.

.

.

.

.

.

.

. 60

55.

Rolling

back

a

transaction

in

Encina++/DCE

60

56.

Creating

and

joining

nontransactional

threads

63

57.

Sample

function

executed

on

a

nontransactional

thread

.

.

.

.

.

.

.

. 64

58.

Creating

concurrent

transactional

threads

65

59.

Sample

function

executed

on

a

transactional

thread

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

60.

Creating

concurrent

transactions

.

.

.

.

. 66

61.

Sample

function

executed

on

a

concurrent

transactional

thread

.

.

.

.

.

.

.

.

.

. 66

62.

Creating

concurrent

subtransactions

.

.

.

. 66

©

Copyright

IBM

Corp.

1999,

2004

v

|

|

|

|

|

vi

TXSeries™:

Encina

Object-Oriented

Programming

Guide

Tables

1.

Conventions

used

in

this

book

.

.

.

.

.

. x

2.

Description

of

Encina++

product

names

.

.

. 2

3.

Binding

file

entries

.

.

.

.

.

.

.

.

.

. 36

4.

DCE

libraries

by

platform

.

.

.

.

.

.

.

. 72

5.

Platform-specific

libraries

.

.

.

.

.

.

.

. 72

6.

Platform-specific

compiler

options

for

UNIX

73

7.

Platform-specific

linker

options

for

UNIX

(HP-UX

only)

.

.

.

.

.

.

.

.

.

.

.

. 73

8.

Platform-specific

compiler

and

linker

options

for

Windows

.

.

.

.

.

.

.

.

.

.

.

. 73

©

Copyright

IBM

Corp.

1999,

2004

vii

||

||

viii

TXSeries™:

Encina

Object-Oriented

Programming

Guide

About

this

book

This

document

explains

how

to

use

Encina++

to

develop

object-oriented

distributed

applications

in

the

Distributed

Computing

Environment

(DCE).

Encina++

simplifies

application

development

by

providing

high-level

interfaces

to

the

Encina®

Toolkit

development

tools,

the

Encina

Monitor,

the

Encina

Recoverable

Queueing

Service

(RQS),

and

the

Encina

Structured

File

Server

(SFS).

Each

interface

provides

a

specific

type

of

service

or

performs

a

specific

task

required

by

distributed

applications.

Encina++

includes

a

set

of

extensions

to

the

C++

language

that

provide

direct

access

to

low-level

constructs,

such

as

threading.

Who

should

read

this

book

This

guide

is

intended

for

developers

who

are

new

to

developing

object-oriented

distributed

or

transactional

applications.

Users

of

this

document

should

be

familiar

with

program

development

in

the

C++

programming

language

and

the

Encina

Monitor.

Document

organization

This

document

has

the

following

organization:

v

Chapter

1,

“What

is

Encina++?,”

on

page

1

describes

the

application

programming

interfaces

and

the

support

for

client

and

server

applications

in

the

DCE

environment.

v

Chapter

2,

“The

Encina++

programming

model,”

on

page

5

introduces

the

concepts

behind

object-oriented

transaction

processing

and

distributed

computing.

v

Chapter

3,

“Developing

distributed

applications,”

on

page

9

provides

general

information

on

writing

distributed

client/server

applications

using

Encina++.

v

Chapter

4,

“Developing

Encina++/DCE

applications,”

on

page

17

provides

an

overview

of

the

issues

specific

to

developing

applications

in

the

DCE

environment

and

describes

how

to

write

distributed

client/server

applications

in

the

DCE

environment.

v

Chapter

5,

“Transaction

processing

overview,”

on

page

39

provides

an

overview

of

the

transaction

demarcation

interfaces

available

in

Encina++.

v

Chapter

6,

“Transaction

processing

with

Transactional-C++,”

on

page

41

describes

how

to

use

the

Transactional-C++

interface

to

begin,

end,

and

manage

transactions

in

Encina++

applications.

v

Chapter

7,

“Transaction

processing

with

OMG

OTS

for

Encina++,”

on

page

55

describes

how

to

use

the

Encina++

Object

Transaction

Service

(OTS)

interface

to

begin,

end,

and

manage

transactions

in

Encina++

applications.

v

Chapter

8,

“Using

threads,”

on

page

63

provides

information

on

using

threads

in

Encina++

applications.

v

Chapter

9,

“Diagnostics,”

on

page

69

provides

information

on

the

diagnostic

facilities

available

for

Encina++.

v

“Compilation

issues,”

on

page

71

provides

information

on

Encina++

header

and

library

files,

Java

package

and

class

library

files,

and

some

miscellaneous

compilation

issues.

©

Copyright

IBM

Corp.

1999,

2004

ix

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

Related

information

For

further

information

on

the

topics

discussed

in

this

manual,

see

the

following

documents:

v

Writing

Encina

Applications

v

Encina

Administration

Guide

Volume

1:

Basic

Administration

v

Encina

Monitor

Programming

Guide

v

Encina

RQS++

and

SFS++

Programming

Guide

v

Encina

Transactional

Programming

Guide

v

Encina

Toolkit

Programming

Guide

v

OSF

DCE

Application

Development

Reference

and

OSF

DCE

Application

Development

Guide

(for

information

about

developing

applications

that

use

DCE)

Conventions

used

in

this

book

TXSeries

documentation

uses

the

following

typographical

and

keying

conventions.

Table

1.

Conventions

used

in

this

book

Convention

Meaning

Bold

Indicates

values

you

must

use

literally,

such

as

commands,

functions,

and

resource

definition

attributes

and

their

values.

When

referring

to

graphical

user

interfaces

(GUIs),

bold

also

indicates

menus,

menu

items,

labels,

buttons,

icons,

and

folders.

Monospace

Indicates

text

you

must

enter

at

a

command

prompt.

Monospace

also

indicates

screen

text

and

code

examples.

Italics

Indicates

variable

values

you

must

provide

(for

example,

you

supply

the

name

of

a

file

for

file_name).

Italics

also

indicates

emphasis

and

the

titles

of

books.

<

>

Enclose

the

names

of

keys

on

the

keyboard.

<Ctrl-x>

Where

x

is

the

name

of

a

key,

indicates

a

control-character

sequence.

For

example,

<Ctrl-c>

means

hold

down

the

Ctrl

key

while

you

press

the

c

key.

<Return>

Refers

to

the

key

labeled

with

the

word

Return,

the

word

Enter,

or

the

left

arrow.

%

Represents

the

UNIX®

command-shell

prompt

for

a

command

that

does

not

require

root

privileges.

#

Represents

the

UNIX

command-shell

prompt

for

a

command

that

requires

root

privileges.

C:\>

Represents

the

Windows
®

command

prompt.

>

When

used

to

describe

a

menu,

shows

a

series

of

menu

selections.

For

example,

″Select

File

>

New″

means

″From

the

File

menu,

select

the

New

command.″

Entering

commands

When

instructed

to

“enter”

or

“issue”

a

command,

type

the

command

and

then

press

<Return>.

For

example,

the

instruction

“Enter

the

ls

command”

means

type

ls

at

a

command

prompt

and

then

press

<Return>.

[

]

Enclose

optional

items

in

syntax

descriptions.

{

}

Enclose

lists

from

which

you

must

choose

an

item

in

syntax

descriptions.

|

Separates

items

in

a

list

of

choices

enclosed

in

{

}

(braces)

in

syntax

descriptions.

...

Ellipses

in

syntax

descriptions

indicate

that

you

can

repeat

the

preceding

item

one

or

more

times.

Ellipses

in

examples

indicate

that

information

was

omitted

from

the

example

for

the

sake

of

brevity.

IN

In

function

descriptions,

indicates

parameters

whose

values

are

used

to

pass

data

to

the

function.

These

parameters

are

not

used

to

return

modified

data

to

the

calling

routine.

(Do

not

include

the

IN

declaration

in

your

code.)

x

TXSeries™:

Encina

Object-Oriented

Programming

Guide

Table

1.

Conventions

used

in

this

book

(continued)

Convention

Meaning

OUT

In

function

descriptions,

indicates

parameters

whose

values

are

used

to

return

modified

data

to

the

calling

routine.

These

parameters

are

not

used

to

pass

data

to

the

function.

(Do

not

include

the

OUT

declaration

in

your

code.)

INOUT

In

function

descriptions,

indicates

parameters

whose

values

are

passed

to

the

function,

modified

by

the

function,

and

returned

to

the

calling

routine.

These

parameters

serve

as

both

IN

and

OUT

parameters.

(Do

not

include

the

INOUT

declaration

in

your

code.)

$CICS

Indicates

the

full

path

name

where

the

CICS®

product

is

installed;

for

example,

C:\opt\TXSeries\cics

on

Windows®

or

/opt/cics

on

Solaris.

If

the

environment

variable

named

CICS

is

set

to

the

product

path

name,

you

can

use

the

examples

exactly

as

shown;

otherwise,

you

must

replace

all

instances

of

$CICS

with

the

CICS

product

path

name.

CICS

on

Open

Systems

Refers

collectively

to

the

CICS

product

for

all

supported

UNIX

platforms.

TXSeries®

CICS

Refers

collectively

to

the

CICS

for

AIX®,

CICS

for

HP-UX,

CICS

for

Solaris,

and

CICS

for

Windows

products.

CICS

Refers

generically

to

the

CICS

on

Open

Systems

and

CICS

for

Windows

products.

References

to

a

specific

version

of

a

CICS

on

Open

Systems

product

are

used

to

highlight

differences

between

CICS

on

Open

Systems

products.

Other

CICS

products

in

the

CICS

Family

are

distinguished

by

their

operating

system

(for

example,

CICS

for

OS/2®

or

IBM®

mainframe-based

CICS

for

the

ESA,

MVS™,

and

VSE

platforms).

How

to

send

your

comments

Your

feedback

is

important

in

helping

to

provide

the

most

accurate

and

highest

quality

information.

If

you

have

any

comments

about

this

book

or

any

other

TXSeries™

documentation,

send

your

comments

by

e-mail

to

idrcf@hursley.ibm.com.

Be

sure

to

include

the

name

of

the

book,

the

document

number

of

the

book,

the

version

of

TXSeries,

and,

if

applicable,

the

specific

location

of

the

information

you

are

commenting

on

(for

example,

a

page

number

or

table

number).

About

this

book

xi

|
|
|
|
|

|
|

xii

TXSeries™:

Encina

Object-Oriented

Programming

Guide

Chapter

1.

What

is

Encina++?

Encina++

is

a

set

of

interfaces

for

programming

Encina

applications

using

the

C++

language.

Encina++

provides

an

object-oriented

model

for

the

development

of

client

and

server

application

programs

in

a

distributed

transaction

processing

environment.

DCE

support

Encina++

supports

the

development

of

object-oriented

applications

that

are

based

on

the

Distributed

Computing

Environment

(DCE).

Encina++

contains

several

different

application

programming

interfaces.

Note:

The

Encina++

header

files

contain

definitions

of

classes

and

member

functions

that

are

not

documented.

Undocumented

classes

and

functions

are

not

supported

and,

therefore

should

not

be

used.

There

is

no

guarantee

that

undocumented

classes

or

functions

will

be

available

or

will

exhibit

the

same

behavior

in

future

releases.

Client

and

server

support

interfaces

The

following

Encina++

programming

interfaces

provide

client

and

server

support

and

transaction

demarcation

capabilities.

v

The

Encina++

interface

defines

C++

classes

and

member

functions

that

enable

the

creation

and

management

of

client/server

applications

and

provide

support

for

the

underlying

environment.

v

The

Transactional-C++

(Tran-C++)

interface

defines

C++

constructs

and

macros

as

well

as

classes

and

member

functions

for

distributed

transaction

processing.

This

interface

provides

an

object-oriented

alternative

to

the

Encina

Transactional-C

interface.

v

The

Object

Management

Group

Object

Transaction

Service

(OMG

OTS)

interface

also

defines

C++

classes

and

member

functions

for

distributed

transactional

processing.

This

interface

implements

the

OMG

Object

Transaction

Service

specification

as

documented

in

OMG

document

94.8.4.

To

write

Encina++/DCE

applications,

you

must

use

Encina’s

Transactional

Interface

Definition

Language

(TIDL)

compiler

to

generate

stub

files

for

communications

between

Encina++

clients

and

servers,

adding

transactional

semantics

to

remote

procedures;

using

TIDL,

you

define

which

functions

in

the

interface

are

transactional.

Encina++/DCE

clients

bind

to

exported

server

objects

by

using

constructors

defined

in

the

client

stubs

generated

by

the

TIDL

compiler.

Object-oriented

access

interfaces

The

following

Encina++

programming

interfaces

provide

object-oriented

access

to

two

types

of

Encina

servers

offering

specialized

services:

v

The

Recoverable

Queueing

Service

C++

interface

(RQS++)

defines

C++

classes

and

functions

for

enqueueing

and

dequeueing

data

transactionally.

©

Copyright

IBM

Corp.

1999,

2004

1

|
|
|
|

|
|

|

v

The

Structured

File

Server

C++

interface

(SFS++)

defines

C++

classes

and

functions

for

manipulating

data

stored

in

record-oriented

files

while

maintaining

transactional

integrity.

In

addition,

you

can

use

Encina’s

Data

Definition

Language

(DDL)

compiler

to

generate

the

classes

used

by

RQS++

and

SFS++

applications.

For

more

information

on

these

interfaces,

see

the

Encina

RQS++

and

SFS++

Programming

Guide.

Client

and

server

support

Encina++

offers

the

following

features

for

object-oriented,

distributed

transaction

processing

applications:

v

Initialization

of

clients

and

servers

v

Transparent

and

explicit

binding

v

Object

registration

and

binding

v

Integration

of

XA-compliant

databases

v

Transactional

and

nontransactional

threads

v

Integrated

exception

handling

Encina++

enables

you

to

develop

several

different

types

of

client

and

server

applications

in

C++

that

access

Encina++

servers.

C++

clients

and

servers

The

Encina++

interfaces

are

designed

to

support

functionality

exported

by

the

Encina

Monitor

and

can

be

used

to

create

Monitor

application

servers

and

clients

in

C++.

See

the

Encina

Monitor

Programming

Guide

and

Concepts

and

Planning

for

more

information

on

the

Encina

Monitor.

The

Encina++

interfaces

also

support

the

development

of

C++

client

and

server

applications

that

do

not

run

under

the

control

of

the

Encina

Monitor.

Encina

applications

that

do

not

use

the

Monitor

are

sometimes

generally

referred

to

as

Toolkit

clients

or

servers.

RQS++

and

SFS++

applications

can

be

Monitor

application

servers

or

clients

or

they

can

be

Toolkit

servers

or

clients.

All

RQS++

and

SFS++

applications

require

DCE.

Encina++

terminology

The

object-oriented

programming

interfaces

for

Encina

can

be

grouped

together

in

a

variety

of

ways,

depending

on

which

components

and

environments

are

used.

Table

2

describes

the

names

used

to

refer

to

them

in

this

manual.

“DCE

support”

on

page

1

provides

more

information

about

the

individual

interfaces.

Table

2.

Description

of

Encina++

product

names

Term

Description

Encina++

Used

as

a

generic

name

for

all

the

object-oriented

interfaces

in

Encina,

including

client/server

support,

transaction

processing

support

for

C++,

RQS++,

and

SFS++.

Encina++/DCE

Refers

to

the

interfaces

that

can

be

used

in

a

DCE-only

environment,

including

client/server

support,

Tran-C++,

and

a

subset

of

OMG

OTS.

2

TXSeries™:

Encina

Object-Oriented

Programming

Guide

|
|

|
|
|
|

|
|
|
|

|
|
|

||

||

||
|
|
|

||
|
|

Table

2.

Description

of

Encina++

product

names

(continued)

Term

Description

OTS

for

Encina++/DCE

Refers

specifically

to

the

OMG

OTS

interface

for

the

DCE-only

environment.

This

does

not

include

client/server

support

or

Tran-C++.

SFS++

Refers

to

the

C++

interfaces

to

SFS.

RQS++

Refers

to

the

C++

interfaces

to

RQS.

Chapter

1.

What

is

Encina++?

3

|

||

||
|
|

||

||
|

4

TXSeries™:

Encina

Object-Oriented

Programming

Guide

Chapter

2.

The

Encina++

programming

model

Encina++

is

an

extension

to

Encina

that

is

used

to

build

object-oriented

distributed

computing

systems.

Encina++

supports

a

client/object

programming

model

in

which

Encina++

clients

can

access

objects

exported

by

Encina++

application

servers.

Using

objects

to

build

distributed

computing

systems

provides

benefits

such

as

faster

application

development,

reduced

complexity,

and

improved

reuse

of

application

code.

This

chapter

provides

an

overview

of

the

Encina++

programming

model.

The

topics

introduced

in

this

chapter

are

covered

in

greater

detail

in

later

chapters.

Object-oriented

distributed

computing

In

distributed

object

computing,

objects

can

be

located

across

a

variety

of

platforms

and

in

different

processes

and

can

communicate

transparently

with

each

other

(by

issuing

method

requests)

as

if

they

were

located

on

a

single

machine.

As

illustrated

in

Figure

1,

client

objects

invoke

methods

on

implementation

objects

exported

by

servers;

implementation

objects

are

typically

located

on

different

machines

from

the

clients.

Clients

are

unaware

that

the

methods

are

being

performed

remotely—much

like

conventional

clients

that

make

remote

procedure

calls

(RPCs).

The

Distributed

Computing

Environment

(DCE)

includes

features

that

support

the

use

of

distributed

objects.

For

example,

DCE

provides

an

interface

definition

language

(IDL)

that

provides

a

way

to

group

related

operations

together

in

a

logical

fashion,

much

the

way

a

class

definition

does.

An

interface

definition

can

be

mapped

to

a

class

definition

in

which

class

member

functions

represent

the

operations

defined

in

the

interface

(as

shown

in

Figure

2

on

page

6).

Figure

1.

Distributed

object

computing

©

Copyright

IBM

Corp.

1999,

2004

5

|
|
|
|
|
|

The

Encina++

programming

model

provides

a

distributed,

object-oriented

programming

environment

for

developing

Encina

applications.

Using

the

Transactional

IDL

(TIDL)

compiler

for

Encina++/DCE,

you

can

generate

class

definitions

from

interface

definition

files.

The

Encina++

application

programming

interfaces

enable

you

to

create

and

manage

distributed

objects

based

on

those

generated

classes.

Client/object

programming

The

Encina++

classes

support

a

client/object

programming

model

in

which

clients

access

objects

instead

of

servers.

Servers

make

one

or

more

interfaces

(classes)

available

by

exporting

one

or

more

instances

of

each

class

(objects).

The

client

application

can

access

objects

exported

by

servers

without

the

application

developer

knowing

how

the

objects

available

in

the

system

map

to

servers.

Clients

can

bind

to

objects

exported

by

servers.

They

can

bind

to

individual

objects

when

the

objects

are

known,

or

they

can

bind

to

any

appropriate

object

when

the

specific

objects

are

not

known

or

when

all

objects

of

a

specific

class

provide

the

same

capabilities.

Typically,

the

application

developer

specifies

a

name

for

an

object.

In

Encina++,

an

interface

definition

language

is

used

to

specify

the

interfaces

to

objects

in

the

form

of

remote

procedures.

The

remote

procedures

are

used

for

communications

between

the

client

and

server

applications.

The

interface

compiler

generates

files

that

include

client

stub

and

server

stub

classes

for

each

interface.

These

stub

classes

give

the

client

and

server

a

slightly

different

view

of

the

same

interface.

Communications

Before

RPCs

can

be

made

between

a

client

and

server,

the

server

must

be

available

to

receive

requests

from

clients.

Creating

an

instance

of

the

implementation

class

(also

known

as

the

server

stub

class)

within

a

running

server

causes

the

object

to

be

exported

to

the

namespace

so

that

a

client

can

locate

and

bind

to

it.

The

instance

is

referred

to

as

an

implementation

object.

A

client

creates

an

instance

of

the

corresponding

client

stub

class;

the

instance

is

referred

to

as

a

client

proxy

object.

The

client

application

uses

the

client

proxy

object

to

bind

the

client

to

the

implementation

object

(as

shown

in

Figure

3

on

page

7).

After

the

client

proxy

object

is

bound

to

the

implementation

object,

each

member

function

call

made

on

the

client

proxy

object

invokes

an

RPC

to

the

implementation

object,

which

executes

the

procedure

and

returns

results

to

the

client

proxy

object.

The

client

communicates

with

the

implementation

object

via

the

client

proxy

object.

Figure

2.

Simple

mapping

of

a

DCE

interface

to

a

C++

class

6

TXSeries™:

Encina

Object-Oriented

Programming

Guide

|
|
|
|
|
|

Application

initialization

and

management

Clients

and

servers

are

implemented

as

objects

in

Encina++

applications.

The

Encina

C++

interface

supplies

a

client

class

and

a

server

class

that

can

be

used

to

initialize

clients

and

servers.

Operations

available

on

an

initialized

server

instance

can

be

used

to

register

XA

resources,

make

implementation

objects

available

to

clients,

and

listen

for

incoming

RPCs.

In

a

DCE

environment,

you

can

administer

Encina++

application

servers

by

using

the

Enconsole

administrative

tool.

Other

classes

are

provided

for

managing

various

aspects

of

an

Encina++

application.

For

example,

threads

of

control

can

be

created

in

both

transactional

and

nontransactional

contexts

(see

“Transactional

and

nontransactional

threads”).

Transaction

processing

Applications

use

transaction

processing

to

ensure

that

data

remains

correct,

consistent,

and

secure.

Transaction

processing

in

an

object-oriented

distributed

environment

enables

distributed

objects

to

meet

the

same

requirements.

(Refer

to

the

Encina

Transactional

Programming

Guide

for

more

information

on

transaction

processing.)

Encina++

supplies

two

different

C++

interfaces

for

object-oriented

transaction

processing:

Tran-C++

and

the

Object

Management

Group

(OMG)

OTS.

These

interfaces

can

be

used

either

separately

or

together

in

an

Encina++

application;

issues

regarding

the

compatibility

of

Tran-C++

and

OMG

OTS

are

covered

in

“Interactions

between

Tran-C++

and

OTS

interfaces”

on

page

61.

Tran-C++

provides

constructs,

macros,

and

classes

that

integrate

transactional

semantics

into

the

C++

programming

language.

In

Tran-C++,

a

transaction

class

is

used

to

implement

transactions

as

objects.

The

constructs

and

macros

use

functionality

defined

for

transaction

objects

to

simplify

the

creation

and

management

of

transactions

in

Encina++

applications.

Transactional

and

nontransactional

threads

Threads

can

be

used

to

improve

the

performance

of

an

application.

An

application

can

perform

a

task

(or

set

of

tasks)

in

less

time

by

executing

operations

concurrently

rather

than

serially.

Encina++

provides

classes

that

encapsulate

Portable

Operating

System

Interface

(POSIX)

threads.

These

classes

allow

you

to

create

and

manage

two

different

types

of

threads:

transactional

threads

and

nontransactional

threads.

A

transactional

thread

executes

on

behalf

of

the

current

transaction,

if

one

exists.

Using

transactional

threads,

you

can

create

multiple

threads

that

execute

concurrently

within

a

single

Figure

3.

Binding

to

an

implementation

object

Chapter

2.

The

Encina++

programming

model

7

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

transaction

or

multiple

transactions

that

execute

concurrently.

A

nontransactional

thread

does

not

execute

on

behalf

of

a

transaction

even

if

created

within

the

scope

of

a

transaction.

8

TXSeries™:

Encina

Object-Oriented

Programming

Guide

Chapter

3.

Developing

distributed

applications

This

chapter

describes

the

basic

steps

used

to

develop

a

distributed

application

with

Encina++.

The

chapter

also

describes

how

to

use

features

such

as

exceptions

and

threads

that

are

common

to

all

Encina++

applications.

Overview

of

application

development

An

Encina++

application

is

written

in

an

object-oriented

language

(such

as

C++)

and

consists

of

calls

on

both

local

and

remote

objects.

The

interface

to

a

remote

object

is

defined

by

using

an

interface

definition

language

(IDL).

The

following

steps

are

required

to

develop

a

distributed

application

in

Encina++:

1.

Design

the

application

and

determine

the

local

and

remote

objects

and

procedures

that

are

required.

2.

Use

an

IDL

to

define

the

remote

objects

and

procedures.

3.

Compile

the

IDL

files

to

generate

client

and

server

stub

classes.

4.

Write

the

application

code

for

the

client

and

server.

5.

Compile

and

link

the

client

and

server

applications.

Step

1,

application

design,

is

beyond

the

scope

of

this

document.

Steps

2,

3,

and

5

depend

on

the

DCE

environment.

Step

4

is

to

write

the

application

code

for

your

client

and

server.

This

step

involves

some

tasks

that

are

environment-specific

and

some

that

are

not.

Tasks

such

as

initialization

and

termination

of

Encina++

clients

and

servers,

are

covered

in

this

chapter.

The

environment-specific

tasks,

such

as

generating

client

and

server

stubs

and

binding

to

remote

objects,

are

covered

in

later

chapters.

Chapter

4,

“Developing

Encina++/DCE

applications,”

on

page

17

provides

information

on

developing

Encina++

applications

in

a

DCE

environment.

Writing

client

applications

This

section

describes

how

to

initialize

and

terminate

an

Encina++

client

application.

In

addition

to

performing

tasks

that

are

specific

to

your

application,

Encina++

client

applications

must

perform

the

following

basic

steps:

1.

Initialize

underlying

Encina

services.

2.

Bind

to

a

remote

object.

3.

Terminate

the

client.

Each

step

is

described

in

the

following

sections.

Initializing

a

client

application

The

Encina::Client::Initialize

function

is

used

to

initialize

a

client

application.

This

function

initializes

all

of

the

necessary

underlying

Encina

components

and

services.

Figure

4

on

page

10

shows

a

simple

example

of

initializing

a

client

application.

©

Copyright

IBM

Corp.

1999,

2004

9

|
|
|

|
|

|
|
|
|

The

functions

of

the

Encina::Client

class

are

static

functions;

it

is

not

necessary

to

create

an

instance

of

the

class.

The

client

program

examples

in

this

and

other

chapters

use

the

Encina::Client

class

to

initialize

a

client

application.

For

Encina++/DCE

clients

that

bind

to

Monitor

application

servers

(MAS)

only,

you

can

also

use

the

EncinaMonitorClient

class

to

initialize

a

client.

This

class,

which

is

publicly

derived

from

the

Encina::Client

class,

provides

an

overloaded

EncinaMonitorClient::Initialize

function,

which

initializes

the

client

and

associates

it

with

a

specific

Encina

Monitor

cell.

This

function

allows

you

to

specify

the

following:

v

The

Monitor

cell

in

which

the

client

operates.

If

the

function

does

not

specify

a

particular

Monitor

cell,

the

value

of

the

ENCINA_TPM_CELL

environment

variable

is

used,

just

as

with

the

Encina::Client::Initialize

function.

v

Whether

the

client

calls

the

Encina::Client::Exit

function

when

it

receives

an

interrupt.

By

default,

it

does

not.

Binding

to

remote

objects

The

client

stub

class

generated

from

the

interface

definition

is

used

by

the

client

application

to

locate

and

bind

to

remote

objects

or

servers

that

export

the

requested

interface.

After

the

client

application

is

initialized,

you

use

an

instance

of

the

client

stub

class,

called

a

client

proxy

object,

to

bind

to

a

remote

object.

See

Chapter

4,

“Developing

Encina++/DCE

applications,”

on

page

17

for

information

on

binding

in

DCE.

The

client

stub

class

includes

member

functions

for

the

operations

defined

in

the

interface.

Once

a

proxy

object

is

bound

to

a

remote

object,

calling

a

member

function

on

the

proxy

object

makes

a

remote

procedure

call

(RPC),

invoking

the

corresponding

method

on

the

remote

object.

Terminating

a

client

application

To

terminate

a

client,

you

must

call

the

Encina::Client::Exit

function.

The

client

application

must

call

the

Encina::Client::Exit

function

as

the

last

statement

of

the

main

routine,

as

shown

in

Figure

4.

If

you

need

to

terminate

the

client

at

any

other

time,

you

also

use

the

Encina::Client::Exit

function.

The

example

in

Figure

4

shows

the

function

being

used

to

terminate

a

client

application

when

binding

to

a

remote

object

fails.

The

function

takes

one

argument,

which

is

an

integer

status

value

that

is

returned

to

the

calling

environment.

int

main(int

argc,

char

*argv[])

{

//

process

command-line

arguments

...

//

Initialize

the

client

Encina::Client::Initialize();

try

{

//

Bind

to

a

remote

object

}

catch

(...)

{

cerr

<<

"An

exception

was

raised."

<<

endl;

Encina::Client::Exit(1);

}

//

Perform

work

...

Encina::Client::Exit(0);

}

Figure

4.

Example

of

initializing

an

Encina

client

10

TXSeries™:

Encina

Object-Oriented

Programming

Guide

|
|
|
|
|
|

Terminating

the

client

application

also

terminates

all

the

underlying

Encina

services

for

the

client

application.

All

of

the

transactions

in

progress

are

aborted

before

the

application

exits.

If

the

client

application

is

interrupted

by

the

user,

it

exits

automatically,

aborting

any

transactions

in

progress.

Writing

server

applications

This

section

describes

the

basic

functionality

that

is

normally

performed

by

an

Encina++

server.

Encina++

servers

normally

perform

the

following

tasks:

1.

Create

one

server

class

instance

to

manage

the

server.

2.

Register

any

resources

required

by

the

server

(optional).

3.

Initialize

underlying

Encina

services

(optional).

4.

Create

one

or

more

server

objects.

5.

Listen

for

incoming

RPCs.

6.

Terminate

the

server

as

required.

Each

step

is

described

in

the

following

sections.

The

typical

steps

used

by

a

simple

server

are

illustrated

in

the

example

in

Figure

5.

The

server

program

examples

in

this

and

other

chapters

use

the

Encina::Server

class

to

initialize

and

terminate

a

server

application,

register

resources,

and

listen

for

RPCs.

For

Encina++/DCE

servers

that

operate

in

a

Monitor

environment

only,

you

can

also

use

the

EncinaMonitorServer

class

to

initialize

and

terminate

a

server,

register

resources

for

that

server,

and

listen

for

RPCs.

This

class,

which

is

publicly

derived

from

the

Encina::Server

class,

provides

an

overloaded

EncinaMonitorServer::RegisterResource

function

registers

and

opens

a

resource

manager

and

associates

the

name

of

the

resource

manager

with

its

open

and

close

strings

and

its

thread-of-control

agreement.

int

main(int

argc,

char

*argv[])

{

//

Process

command-line

arguments

...

//

Create

and

initialize

the

server

Encina::Server

server;

server.Initialize();

//

Initialize

other

Encina

components

...

//

Create

server

objects

...

try

{

//

Listen

for

incoming

RPCs

server.Listen(Encina::Server::SERIALIZE_TRPCS_AND_TRANSACTIONS);

}

catch

(...)

{

cerr

<<

"An

exception

was

raised."

<<

endl;

exit(1);

}

exit(0);

}

Figure

5.

Example

of

initializing

an

Encina

server

Chapter

3.

Developing

distributed

applications

11

Creating

a

server

instance

The

first

step

for

the

server

application

is

to

create

an

instance

of

the

Encina::Server

class

to

represent

the

application

server.

The

class

constructor

takes

no

arguments,

as

shown

in

Figure

5

on

page

11.

Creating

the

server

instance

initializes

the

runtime

attributes

of

the

server.

Your

application

uses

this

instance

to

manage

the

server;

only

one

instance

is

permitted

per

server

application.

We

strongly

recommend

that

you

create

an

instance

of

the

Encina::Server

class

inside

main,

as

shown

in

Figure

5

on

page

11.

If

you

need

to

create

a

global

instance

of

the

Encina::Server

class,

use

the

new

operator.

These

restrictions

also

apply

to

the

OtsServer

class

(version

2.0

of

Encina).

Registering

resources

After

the

server

instance

is

created,

you

must

register

any

resources

that

your

server

requires.

The

Encina::Server::RegisterResource

function

registers

XA-compliant

resources

and

makes

the

server

recoverable.

The

example

in

Figure

6

illustrates

the

use

of

this

function.

The

Encina::Server::RegisterResource

function

takes

the

following

arguments:

v

xaSwitchP—This

argument

identifies

the

XA

switch

structure

used

by

the

resource

manager.

v

openString—This

argument

specifies

a

character

string

of

information

that

is

specific

to

the

resource

manager

and

is

passed

in

xa_open

calls.

v

closeString—This

argument

specifies

a

character

string

of

information

that

is

specific

to

the

resource

manager

and

is

passed

in

xa_close

calls.

v

isThreadAware—This

argument

specifies

whether

the

resource

manager

library

can

accommodate

multithreaded

applications.

A

nonzero

value

indicates

that

the

library

is

thread

aware;

a

value

of

0

(zero)

indicates

that

it

is

not

thread

aware.

If

you

use

the

EncinaMonitorServer

class

instead

of

the

Encina::Server

class

to

instantiate

a

server

instance,

you

can

use

the

EncinaMonitorServer::RegisterResource

function

instead

of

the

Encina::Server::RegisterResource

function

to

register

a

resource.

The

EncinaMonitorServer::RegisterResource

function

requires

the

following

information:

int

main(int

argc,

char

**argv)

{

const

char*

open;

const

char*

close;

struct

xa_switch_t*

xaSwitch;

//

Create

the

server

Encina::Server

server;

//

Perform

database

initialization

and

get

the

XA

switch

and

//

the

open

and

close

strings

for

the

resource

...

//

Register

a

resource

with

the

server

server.RegisterResource(xaSwitch,

open,

close,

0);

//

Initialize

the

server

server.Initialize();

...

}

Figure

6.

Registering

a

resource

with

an

Encina

server

12

TXSeries™:

Encina

Object-Oriented

Programming

Guide

v

The

XA

switch

structure

used

by

the

resource

manager

being

registered.

v

The

name

associated

with

a

resource

manager’s

open

and

close

strings

and

its

threading

agreement.

This

name

is

associated

with

the

resource

manager

administratively.

If

no

XA-compliant

resources

are

required

for

the

application

but

you

still

want

the

server

to

be

recoverable,

you

can

use

the

Encina::Server::RegisterRecoveryServices

function

instead.

Both

of

these

functions

are

optional.

Accessing

relational

databases

Accessing

a

relational

database

management

system

(RDBMS)

from

an

Encina++

application

is

no

different

from

accessing

an

RDBMS

from

an

Encina

application.

You

can

use

programming

statements

in

the

Structured

Query

Language

(SQL),

or

use

the

application

programming

interface

(API)

native

to

the

relational

database,

or

both.

Modules

containing

SQL

statements

require

precompiling

before

being

compiled

along

with

the

other

modules

of

the

application.

Because

the

SQL

precompilers

of

many

database

systems

do

not

support

C++,

modules

that

include

SQL

can

be

written

in

C

and

compiled

separately

before

linking

them

in

with

the

rest

of

the

application.

Any

database

access

must

be

done

in

the

context

of

a

transaction.

Subtransactions

are

not

supported

by

the

XA

interface.

Therefore,

work

with

a

database

is

done

following

these

steps:

1.

Connect

to

the

database.

2.

Begin

the

transaction.

3.

Access

the

data.

4.

Commit,

suspend,

or

abort

the

transaction.

5.

Repeat

Steps

2

to

4

as

many

times

as

you

like.

6.

Close

the

database

connection.

See

the

Encina

Monitor

Programming

Guide

for

further

information

about

accessing

relational

databases.

Initializing

a

server

After

you

have

created

the

server

instance

and

registered

any

required

resources,

the

next

step

is

to

initialize

the

underlying

Encina

components

and

services.

Initialization

can

be

done

explicitly

by

calling

the

Encina::Server::Initialize

function.

Calling

this

function

is

optional

in

certain

cases

because

the

Encina::Server::Listen

function

(called

as

the

final

step

in

the

initialization

of

the

server

application)

initializes

the

underlying

components

and

services

if

they

are

not

already

initialized.

You

must

call

the

Encina::Server::Initialize

function

if

you

want

to

do

application-specific

initialization

that

involves

the

use

of

transactions

or

RPCs

before

the

server

begins

listening

for

RPCs.

“Initializing

a

Monitor

server”

describes

how

to

initialize

a

server.

Initializing

a

Monitor

server

Encina++/DCE

servers

can

be

developed

to

run

under

the

control

of

the

Encina

Monitor.

The

Monitor

provides

features

that

simplify

the

development

and

administration

of

servers.

System

administrators

start

and

stop

these

servers

by

using

Monitor

administrative

tools

such

as

Enconsole.

Chapter

3.

Developing

distributed

applications

13

|

Monitor

servers

obtain

startup

information

automatically

from

the

Monitor

environment.

This

type

of

server

can

use

the

version

of

the

Encina::Server::Initialize

function

that

takes

no

arguments

(as

shown

in

Figure

5

on

page

11).

Creating

server

objects

Before

a

server

starts

listening

for

RPCs,

it

must

create

one

or

more

server

objects

to

handle

incoming

requests.

Named

server

objects

(as

well

as

factory

objects)

must

be

created

before

the

server

starts

listening

for

RPCs.

Details

on

how

you

create

server

objects

are

provided

in

Chapter

4,

“Developing

Encina++/DCE

applications,”

on

page

17

for

Encina++/DCE

applications.

Listening

for

RPCs

After

server

objects

are

created,

start

the

server

listening

for

incoming

RPCs.

Calling

the

Encina::Server::Listen

function

causes

the

server

to

start

accepting

RPCs

from

Encina++/DCE

clients,

and

sets

the

concurrency

mode

for

the

server.

The

value

passed

as

the

function

parameter

sets

the

concurrency

mode,

which

determines

whether

transactions

and

incoming

RPCs

are

serialized

at

the

server.

This

setting

controls

the

type

of

access

that

the

client

has

to

the

server.

For

example,

if

you

specify

no

serialization,

the

server

starts

a

new

thread

automatically

for

each

transaction

and

RPC.

See

the

reference

page

for

the

Encina::Server::ConcurrencyMode

type

for

descriptions

of

the

available

modes.

By

default,

neither

transactions

nor

transactional

RPCs

are

serialized

at

the

server

when

the

Encina::Server::Listen

function

is

called

with

no

concurrency

mode

specified.

The

example

in

Figure

5

on

page

11

shows

the

function

being

used

to

listen

for

RPCs.

The

Encina::Server::SERIALIZE_TRPCS_AND_TRANSACTIONS

concurrency

mode

specifies

that

all

transactional

RPCs

(TRPCs)

and

transactions

are

serialized

at

the

server.

If

the

server

accesses

a

resource,

such

as

a

database,

that

does

not

have

thread-safe

libraries,

specify

that

the

server

serialize

TRPCs

and

transactions.

Note:

The

thread-safety

of

a

database

is

specified

when

the

resource

is

registered.

This

threading

agreement

applies

only

to

requests

originating

from

clients.

If

the

server

starts

local

transactions

that

also

issue

XA

calls,

these

XA

calls

are

not

governed

by

the

threading

agreement.

Because

the

server-side

calls

are

not

govered

by

the

threading

agreement,

under

certain

circumstances,

mixing

client-

and

server-side

transactions

can

result

in

deadlocks

in

the

database.

Specifically,

such

deadlocks

can

arise

in

an

application

server

that

uses

SERIALIZE_TRPCS_AND_TRANSACTIONS

as

the

concurrency

mode

and

uses

FALSE

(0)

as

the

thread-awareness

value.

To

avoid

these

deadlocks,

do

not

mix

client-

and

server-side

transactions

that

access

the

same

data

within

an

application

server

that

uses

the

concurrency

mode

SERIALIZE_TRPCS_AND_TRANSACTIONS

and

registers

a

database

as

non-thread-aware.

If

the

server

application

has

not

already

called

the

Encina::Server::Initialize

function,

the

Encina::Server::Listen

function

initializes

Encina

before

the

server

begins

listening.

The

function

assumes

that

startup

information

is

available

from

the

environment.

Terminating

a

server

There

are

two

ways

to

terminate

an

MAS:

14

TXSeries™:

Encina

Object-Oriented

Programming

Guide

|
|
|
|
|

|
|
|
|
|
|
|
|

v

Calling

the

ANSI

C

exit

function

terminates

the

MAS

but

does

not

change

the

desired

state

of

the

MAS.

Therefore,

if

an

MAS

terminates

because

of

an

error

condition,

the

node

manager

can

restart

that

server.

Calling

the

ANSI

C

exit

function

affects

only

the

processing

agent

(PA)

in

which

it

is

called;

all

other

PAs

associated

with

the

server

are

unaffected.

Figure

5

on

page

11

demonstrates

use

of

this

function

to

terminate

a

server.

v

Calling

the

Encina::Server::Exit

function

terminates

the

MAS

and

also

changes

the

desired

state

of

the

MAS

to

stopped.

All

PAs

associated

with

the

server

are

also

stopped.

If

you

need

to

forcibly

terminate

and

stop

the

server

application

programmatically

at

any

time,

you

can

use

the

Encina::Server::Exit

function.

The

Encina::Server::Exit

function

never

returns.

The

function

takes

one

argument,

which

is

an

integer

status

value

that

is

returned

to

the

calling

environment.

If

you

used

the

new

operator

to

create

a

global

instance

of

the

Encina::Server

class

(as

described

in

“Creating

a

server

instance”

on

page

12),

you

must

use

the

delete

operator

to

explicitly

delete

it

when

the

server

shuts

down.

Otherwise,

the

server

possibly

does

not

terminate

properly.

This

also

applies

to

global

instances

of

the

OtsServer

class

(version

2.0

of

Encina).

If

the

server

is

stopped

in

an

orderly

manner

(not

forcibly),

the

Encina::Server::Listen

function

returns.

This

allows

your

server

application

to

do

any

necessary

cleanup

before

the

application

exits.

Handling

errors

Errors

are

handled

in

Encina++

by

using

exceptions.

Exceptions

provide

a

way

of

returning

error

information

back

through

multiple

levels

of

procedure

or

function

calls,

propagating

this

information

until

a

function

or

procedure

is

reached

that

can

respond

appropriately

to

the

error.

Rather

than

testing

status

values

to

detect

errors,

Encina++

applications

use

the

C++

exception-handling

mechanism

to

throw

(raise)

and

catch

exceptions

when

error

conditions

occur.

The

exception

class

OtsExceptions::Any

is

the

base

class

for

all

Encina++/DCE

system

exceptions

that

are

thrown

and

caught

when

system

errors

occur.

Exception

classes

enable

application-specific

exceptions

to

be

thrown

by

servers

and

caught

by

clients.

C++

exceptions

can

be

used

to

handle

application-specific

errors

local

to

the

client

or

server.

When

using

Transactional-C++

(see

Chapter

6,

“Transaction

processing

with

Transactional-C++,”

on

page

41),

an

uncaught

exception

aborts

a

transaction.

The

following

sections

describe

how

exceptions

can

be

thrown

and

caught

in

Encina++

applications.

“Using

exceptions

in

Encina++/DCE”

on

page

33

describes

how

to

use

exceptions

in

a

DCE

environment.

Throwing

exceptions

In

Encina++,

the

C++

throw

statement

is

used

to

throw

exceptions.

For

example,

if

an

exception

named

insufficient_funds

is

defined

in

the

interface

definition

file

for

the

account

interface,

a

server

manager

function

for

the

interface

can

throw

the

insufficient_funds

exception

as

shown

in

Figure

7.

if

(balance

<

amount)

throw

insufficient_funds();

Figure

7.

Throwing

a

user-defined

exception

Chapter

3.

Developing

distributed

applications

15

|
|
|
|
|
|
|

|
|
|

Catching

exceptions

In

Encina++,

C++

try

and

catch

blocks

are

used

to

catch

exception.

For

example,

you

can

catch

an

exception

named

insufficient_funds

defined

in

the

interface

definition

file

for

the

account

interface

as

shown

in

Figure

8.

try

{

//

call

to

one

or

more

functions

that

can

throw

the

//

insufficient_funds

exception

}

catch(account::insufficient_funds){

//

error

handling

for

the

named

exception

}

catch(...){

//

error

handling

for

uncaught

exceptions

}

Figure

8.

Catching

exceptions

in

Encina++

16

TXSeries™:

Encina

Object-Oriented

Programming

Guide

Chapter

4.

Developing

Encina++/DCE

applications

This

chapter

describes

how

to

develop

a

distributed

application

by

using

Encina++

for

the

Distributed

Computing

Environment

(DCE).

It

provides

information

about

generating

client

and

server

stub

files

and

writing

client

and

server

applications

that

is

specific

to

Encina++/DCE.

Refer

to

Chapter

3,

“Developing

distributed

applications,”

on

page

9

for

more

general

information

on

developing

distributed

applications

with

Encina++.

Introduction

to

Encina++/DCE

Encina++/DCE

supports

the

development

of

transactional,

object-oriented

applications

for

DCE.

Encina++/DCE

applications

use

DCE’s

remote

procedure

call

(RPC)

mechanism

for

communications

between

clients

and

servers.

This

dependency

on

DCE

RPC

affects

interface

definition,

binding,

and

exception

handling.

In

the

DCE

environment,

the

Transactional

Interface

Definition

Language

(TIDL)

must

be

used

to

specify

object

interfaces

in

the

form

of

remote

procedures.

The

remote

procedures

are

used

for

communications

between

the

client

and

server

applications.

The

interface

definition

in

the

TIDL

file

specifies

whether

each

remote

procedure

for

that

interface

is

executed

transactionally.

Depending

on

the

requirements

of

the

client

application,

you

can

use

one

of

several

methods

to

bind

the

client

to

the

server.

How

you

create

an

instance

of

the

client

stub

class

determines

the

binding

method

used.

The

instance

is

referred

to

as

a

client

proxy

object.

The

client

proxy

object

can

be

bound

to

one

of

the

following:

v

Any

compatible

implementation

object

at

any

server

v

An

implementation

object

with

a

specific

name

v

A

specific

implementation

object

created

dynamically

at

a

specific

server

v

A

specific

server

that

exports

the

required

interface

The

C++

exception-handling

mechanism

is

used

to

integrate

DCE

exceptions

into

Encina++/DCE.

Encina++/DCE

applications

can

throw

and

catch

DCE

and

Encina

system

exceptions

when

error

conditions

occur.

In

addition,

Encina++/DCE

includes

the

ability

to

specify

user-defined

DCE

exceptions.

A

user-defined

exception

is

an

exception

defined

by

the

application

developer

for

handling

application-specific

errors.

A

user-defined

exception

can

be

thrown

by

the

server

and

caught

by

the

client

to

indicate

that

an

error

occurred

during

the

execution

of

an

RPC.

Defining

the

interface

This

section

briefly

describes

TIDL

and

the

TIDL

compiler.

It

also

illustrates

how

to

use

the

TIDL

compiler

to

generate

stub

files

for

client

and

server

applications.

Note

that

this

section

documents

only

special

requirements

for

using

TIDL

with

Encina++/DCE;

refer

to

the

Encina

Transactional

Programming

Guide

for

additional

details

on

TIDL.

©

Copyright

IBM

Corp.

1999,

2004

17

Using

TIDL

with

Encina++

TIDL

is

used

to

define

interfaces

for

the

objects

in

an

Encina++/DCE

application.

TIDL

is

an

interface

definition

language,

similar

to

the

DCE

IDL,

that

defines

operations

between

a

client

and

server.

Unlike

IDL,

however,

TIDL

allows

those

operations

to

be

specified

as

either

transactional

or

nontransactional.

When

the

TIDL

compiler

processes

a

TIDL

file,

the

compiler

produces

code

that

includes

transactional

semantics.

The

TIDL

compiler

generates

C++

stubs

that

include

client

stub

and

server

stub

classes

for

each

interface.

These

stub

classes

give

the

client

and

server

a

slightly

different

view

of

the

same

interface.

The

TIDL

compiler

is

invoked

with

the

tidl

command;

the

-ots

option

must

be

specified

on

the

command

line

so

that

C++

stub

files,

rather

than

C

stub

files,

are

generated

for

the

interfaces

described

in

the

TIDL

file.

On

the

server

side,

two

server

stub

classes

are

generated

as

shown

in

Figure

9

on

page

19.

The

abstract

server

stub

class

contains

virtual

functions

that

map

to

the

remote

procedures

defined

in

the

interface.

The

concrete

server

stub

class

is

derived

from

the

abstract

server

stub

class.

For

example,

if

you

define

an

interface

named

Order

in

a

TIDL

file,

the

TIDL

compiler

generates

the

an

abstract

server

stub

class

named

OrderMgrAbstract

and

a

concrete

server

stub

class

named

OrderMgr.

The

server

application

developer

typically

implements

the

remote

procedures

for

the

interface

as

member

functions

of

the

concrete

server

stub

class.

The

server

application

can

instantiate

objects

of

the

concrete

class;

these

objects

are

then

available

to

clients.

However,

the

server

application

developer

can

also

derive

his

own

class

from

the

abstract

class

and

then

implement

the

remote

procedures

for

the

interface

as

member

functions

of

this

derived

class.

The

server

application

can

then

instantiate

objects

of

the

derived

class

and

make

those

objects

available

to

clients.

On

the

client

side,

a

client

stub

class

is

generated

(also

shown

in

Figure

9

on

page

19).

The

client

stub

class

has

the

same

name

as

the

interface.

For

example,

if

you

define

an

interface

named

Order,

the

TIDL

compiler

generates

a

client

stub

class

also

named

Order.

The

client

stub

class

includes

several

constructors

that

hide

the

details

of

binding.

These

constructors

enable

an

instance

of

the

class

to

represent

a

remote

implementation

object;

a

client

stub

class

instance

acts

as

a

proxy

for

the

object

to

which

it

is

bound

at

the

server.

The

client

stub

class

defines

member

functions

that

map

to

the

remote

procedures

defined

in

the

interface.

Calls

to

the

proxy

object’s

member

functions

result

in

RPCs

to

the

object

that

the

proxy

is

bound

to;

the

RPCs

invoke

the

member

functions

that

are

defined

in

the

concrete

server

stub

class.

18

TXSeries™:

Encina

Object-Oriented

Programming

Guide

TIDL

is

also

used

to

define

factory

objects.

The

TIDL

interface

defining

a

factory

object

must

include

remote

procedures

for

creating

and

deleting

implementation

objects.

Typically,

Create

and

Delete

functions

are

defined

for

the

factory

object.

Making

operations

transactional

To

define

an

operation

as

transactional

for

an

Encina++/DCE

application,

you

declare

it

in

the

TIDL

file

for

an

interface.

In

Figure

10,

an

example

TIDL

file

for

the

account

interface

defines

two

operations

as

transactional

and

one

as

nontransactional.

The

transactional

keyword

preceding

the

credit

and

debit

function

definitions

specifies

that

the

functions

are

executed

transactionally.

TIDL

assumes

that

interface

operations

are

transactional;

therefore,

the

transactional

keyword

is

optional.

However,

you

must

use

the

nontransactional

keyword

to

specify

that

an

operation

is

not

transactional,

as

is

the

case

with

the

QueryBalance

function.

Generating

stub

files

This

section

describes

how

to

generate

the

client

and

server

stub

files

for

Encina++/DCE

client

and

server

applications.

The

process

is

described

using

account.tidl

as

the

name

of

an

example

TIDL

interface

definition

file.

Note

that

the

files

with

.C

and

.H

extensions

denote

C++

source

and

header

files.

The

following

steps,

illustrated

in

Figure

11

on

page

20,

are

used

to

generate

the

client

and

server

stub

files:

1.

Execute

the

tidl

command.

Use

the

-ots

option

and

pass

the

account.tidl

file

as

the

argument

to

the

command.

The

compiler

produces

the

following

files:

accountTC.C,

accountTS.C,

accountTC.H,

accountTS.H,

and

account.idl.

2.

Run

the

idl

compiler.

Use

the

-no_mepv

and

-cepv

options

and

pass

the

IDL

interface

definition

file

account.idl

as

the

argument

to

the

command.

The

compiler

produces

the

following

files:

account_cstub.c,

account_sstub.c,

and

account.h.

Figure

9.

Encina++/DCE

client

and

server

stub

classes

[uuid(002068a4-f049-1b28-bdfc-c037cf6a0000),

version(1.0)]

interface

account{

[transactional]

void

debit

([in]

float

amount);

[transactional]

void

credit

([in]

float

amount);

[nontransactional]

float

QueryBalance(void);

}

Figure

10.

Sample

TIDL

declaration

for

transactional

operations

Chapter

4.

Developing

Encina++/DCE

applications

19

The

TIDL

compiler

produces

different

header

files

for

the

client

and

server;

the

IDL

compiler

produces

only

one

header

file.

While

all

of

these

files

are

required

by

the

client

and

server,

you

need

include

only

one

file

in

your

client

and

server

source

files.

The

source

files

for

the

client

must

include

accountTC.H,

and

the

source

files

for

the

server

must

include

accountTS.H.

Binding

to

remote

objects

The

first

time

a

member

function

call

is

made

on

the

client

proxy

object,

the

proxy

object

is

bound

to

an

implementation

object

and

the

call

is

passed

to

that

implementation

object.

The

client

then

communicates

with

the

implementation

object

by

using

the

client

proxy

object.

The

client

stub

class

generated

by

the

TIDL

compiler

is

used

by

the

client

application

to

locate

and

bind

to

remote

objects

or

servers

that

export

the

requested

interface.

The

client

stub

class

is

derived

from

the

OtsBinding

class.

The

OtsBinding

class

is

an

abstract

base

class

that

provides

binding

functionality

for

all

client

stub

classes.

The

member

functions

defined

in

the

client

stub

class

map

to

the

remote

procedures

specified

in

the

TIDL

file.

Creating

a

client

proxy

object

causes

the

proxy

object

to

bind

to

a

remote

object.

When

a

member

function

call

is

made

on

the

proxy

object,

the

proxy

object

makes

an

RPC

and

invokes

the

corresponding

method

on

the

implementation

object

to

which

the

proxy

object

is

bound.

A

client

stub

class

is

generated

for

each

defined

interface.

The

form

and

method

of

binding

between

client

proxy

objects

and

implementation

objects

are

determined

by

the

constructor

used

to

create

an

instance

of

the

client

stub

class.

The

generated

client

stub

class

defines

several

constructors.

For

example,

given

an

interface

named

account,

the

following

constructors

are

defined

automatically

for

the

client

stub

class

account:

v

account(void)—This

constructor

binds

the

client

proxy

object

transparently

to

any

implementation

object

that

offers

the

interface.

v

account(char

*objectName)—This

constructor

binds

the

client

proxy

object

to

the

implementation

object

specified

by

the

objectName

parameter.

Figure

11.

Generating

Encina++/DCE

client

and

server

stub

files

20

TXSeries™:

Encina

Object-Oriented

Programming

Guide

v

account(OtsServerName

&server)—This

constructor

binds

the

client

proxy

object

to

a

Monitor

application

server

that

exports

the

interface;

the

name

of

the

server

must

be

specified.

This

binding

method

can

be

used

to

access

non-Encina++

servers.

v

account(ObjectRef

*objectRef)—This

constructor

binds

the

client

proxy

object

to

an

implementation

object

by

using

an

object

reference.

The

object

reference

specified

in

the

objectRef

parameter

identifies

a

particular

object

in

a

particular

server.

Binding

by

object

reference

is

discussed

in

“Binding

by

object

reference”

on

page

29.

For

information

on

how

the

binding

techniques

are

supported

by

DCE

naming,

see

“Servers

and

objects

in

CDS”

on

page

27.

Note:

Encina++

Monitor

clients

do

not

reuse

the

client

proxy

object’s

binding

handle

by

default.

Instead,

it

uses

a

cache

hierarchy

to

retrieve

a

new

binding

handle

for

each

RPC.

To

ensure

that

Encina++

does

reuse

the

proxy

handle

rather

than

obtaining

a

new

handle,

set

the

ENCINA_OTS_USE_SAME_OBJECT

environment

variable

to

TRUE.

Figure

12

shows

an

example

client

program

that

binds

to

any

remote

implementation

object

that

exports

the

appropriate

interface.

The

constructor

has

no

arguments.

Once

the

client

proxy

object

binds

to

the

implementation

object,

the

proxy

object

can

be

used

to

invoke

remote

procedures,

as

the

call

to

the

example

debit

function

demonstrates.

(Note

that

because

this

function

is

transactional,

it

must

be

called

within

the

scope

of

a

transaction,

as

indicated

by

the

comment

lines.

For

more

information

on

transactions

see

Chapter

5,

“Transaction

processing

overview,”

on

page

39.)

Figure

13

on

page

22

shows

an

example

of

a

client

program

that

binds

to

a

specific

implementation

object.

The

constructor

takes

the

name

of

the

implementation

object,

indicating

that

the

client

proxy

object

binds

to

any

implementation

object

int

main(int

argc,

char

*argv[])

{

//

Process

command-line

arguments

and

prompt

user

for

instructions

...

//

Initialize

the

client

Encina::Client::Initialize();

//

Create

an

account

proxy

object

that

binds

to

any

remote

//

account

object

exported

by

a

server

account

account1;

//

Begin

transaction

//

Perform

work

...

try

{

//

Call

a

member

function

of

the

account

class

to

bind

to

//

a

remote

account

object

account1.debit(amount);

}

catch

(...)

{

cerr

<<

"An

exception

was

raised."

<<

endl;

Encina::Client::Exit(1);

}

...

//

End

transaction

Encina::Client::Exit(0);

}

Figure

12.

Example

of

binding

a

client

to

any

remote

implementation

object

that

offers

a

particular

interface

Chapter

4.

Developing

Encina++/DCE

applications

21

named

accountMgrObj

that

exports

the

appropriate

interface.

Figure

18

on

page

26

shows

an

example

of

the

server

program

required

by

a

client

using

this

example

client

program.

Figure

14

shows

an

example

of

a

client

program

that

binds

to

any

implementation

object

on

the

specified

server

that

exports

the

appropriate

interface.

The

constructor

takes

the

full

DCE

pathname

of

the

server

containing

the

implementation

object

to

which

the

client

proxy

object

binds.

The

client

stub

class

also

defines

a

member

function

for

each

operation

defined

in

the

interface.

The

actual

binding

between

a

client

proxy

object

and

implementation

object

occurs

the

first

time

one

of

these

member

functions

is

invoked

on

the

client

proxy

object.

If

the

member

function

is

defined

as

transactional

in

the

TIDL

file,

the

function

must

be

called

within

the

scope

of

a

transaction.

(See

Chapter

5,

“Transaction

processing

overview,”

on

page

39

for

more

information

on

using

transactions.)

Because

binding

occurs

when

a

member

function

is

called,

the

member

functions

for

the

client

stub

class

are

defined

to

throw

the

following

exceptions

if

an

attempt

at

binding

fails:

v

OtsExceptions::ObjectNotFound—The

named

object

or

an

instance

of

the

specified

class

was

not

found.

v

OtsExceptions::NameServiceError—The

name

service

is

inaccessible

or

the

principal

does

not

have

permission

to

query

the

name

service.

After

a

client

is

bound

to

an

implementation

object,

the

following

exceptions

can

be

thrown

when

a

member

function

defined

in

the

proxy

class

is

called:

v

OtsExceptions::TranAborted—A

transaction

containing

a

transactional

RPC

aborted

at

the

server.

v

OtsExceptions::ServerShutdown—The

server

is

being

terminated

when

a

request

is

made.

int

main(int

argc,

char

*argv[])

{

//

Process

command-line

arguments,

prompt

the

user

for

instructions,

//

and

initialize

the

client

...

//

Create

an

account

object

that

binds

to

a

specific

remote

//

account

object

exported

by

a

server

account

account1("accountMgrObj");

...

}

Figure

13.

Example

of

binding

a

client

to

a

specific

implementation

object

int

main(int

argc,

char

*argv[])

{

//

Process

command-line

arguments,

prompt

the

user

for

instructions,

//

and

initialize

the

client

...

//

Create

an

account

object

that

binds

to

a

specific

server

that

//

exports

the

account

object

account

account1(OtsServerName("/.:/acme/server/AccountServer1"));

...

}

Figure

14.

Example

of

binding

a

client

to

an

implementation

object

on

a

specific

server

22

TXSeries™:

Encina

Object-Oriented

Programming

Guide

v

OtsExceptions::PermissionDenied—The

principal

does

not

have

permission

to

execute

the

requested

operation.

If

you

specify

any

user-defined

exceptions

for

the

interface,

they

can

be

thrown

for

each

member

function

as

well.

Developing

client

applications

This

section

covers

the

DCE-specific

issues

involved

in

writing

Encina++/DCE

client

applications.

It

describes

how

the

client

application

developer

can

use

the

client

stub

class

generated

by

the

TIDL

compiler

to

bind

to

objects

exported

by

the

server.

It

also

describes

how

to

build

and

run

an

Encina++/DCE

client.

Building

clients

A

simple

client

application

is

made

up

of

the

following:

v

A

source

file

for

the

client

that

initiates

remote

requests;

this

file

must

include

the

TIDL-generated

header

file

containing

the

client

class

definition

corresponding

to

the

interface

name.

v

A

client

stub

file

generated

by

the

TIDL

compiler.

v

A

client

stub

file

generated

by

the

DCE

IDL

compiler.

Using

the

example

filenames

shown

in

Figure

11

on

page

20,

Figure

15

illustrates

the

process

used

to

build

Encina++/DCE

client

applications.

In

the

first

part

of

the

process,

the

following

source

files

must

be

compiled:

v

client.C,

which

is

the

client

program

that

initiates

RPCs.

This

file

must

include

the

accountTC.H

header

file

(which

in

turn

includes

the

account.h

header

file)

and

the

appropriate

Encina

header

files

described

in

“Compilation

issues,”

on

page

71.

v

accountTC.C,

which

is

the

client

stub

file

generated

by

the

TIDL

compiler.

v

account_cstub.c,

which

is

the

client

stub

file

generated

by

the

DCE

IDL

compiler.

After

compilation,

the

resulting

object

files

must

be

linked

with

the

appropriate

Encina,

DCE,

and

platform-specific

library

files

described

in

“Compilation

issues,”

on

page

71.

Figure

15.

Building

Encina++/DCE

clients

Chapter

4.

Developing

Encina++/DCE

applications

23

Running

clients

Before

you

run

an

Encina++/DCE

client

application,

you

must

set

the

value

of

the

ENCINA_TPM_CELL

environment

variable

to

specify

the

name

of

the

Monitor

cell

containing

the

servers

to

which

the

client

binds.

To

set

ENCINA_TPM_CELL

in

a

C

shell,

specify

the

fully

qualified

DCE

pathname

for

the

Encina

Monitor

cell

(for

example,

/.:/mycell)

as

follows:

setenv

ENCINA_TPM_CELL

/.:/mycell

Note:

If

you

use

the

EncinaMonitorClient

class

and

the

EncinaMonitorClient::Initialize

function

(with

the

cell

name

specified),

you

do

not

need

to

set

this

environment

variable.

Developing

server

applications

This

section

covers

the

DCE-specific

issues

involved

in

writing

Encina++/DCE

server

applications.

It

documents

the

server

stub

classes

generated

by

the

TIDL

compiler

and

describes

how

the

server

application

developer

can

use

the

server

stub

class

to

implement

a

server

interface

and

create

implementation

objects.

It

also

describes

how

to

build

and

run

an

Encina++/DCE

server.

An

Encina++/DCE

server

must

do

the

following:

v

Implement

the

manager

functions;

that

is,

it

must

contain

the

body

of

the

functions

defined

in

the

interface.

“Implementing

manager

functions”

provides

information

on

this

task.

v

Create

an

implementation

object

to

which

client

proxy

objects

can

bind

to

initiate

RPCs.

“Creating

implementation

objects”

on

page

26

provides

information

on

this

task.

Implementing

manager

functions

Manager

functions

contain

the

business

logic

that

implement

the

procedures

defined

in

an

interface.

When

a

call

on

a

client

proxy

object

results

in

an

RPC,

the

corresponding

manager

function

is

executed.

The

server

classes

generated

by

the

TIDL

compiler

are

used

by

the

server

application

developer

as

the

framework

for

implementing

the

manager

functions.

The

server

classes

TIDL

generates

two

classes

for

each

interface

that

you

define:

an

abstract

server

class

and

a

concrete

server

class.

Use

these

classes

as

follows:

v

If

you

do

not

have

to

create

new

functions

or

variables

for

your

implementation

class,

you

can

use

the

concrete

class

directly

and

implement

functions

of

this

class.

v

If

you

do

need

to

create

new

functions

or

variables

for

your

implementation

class,

you

must

derive

your

implementation

class

from

the

abstract

class

and

implement

the

functions

in

this

derived

class.

For

example,

given

an

interface

named

account,

TIDL

generates

an

abstract

server

class

named

accountMgrAbstract

and

a

concrete

server

class

named

accountMgr,

as

shown

in

Figure

16

on

page

25.

The

concrete

server

class

is

derived

from

the

abstract

server

class.

The

concrete

server

class

is

provided

to

simplify

the

task

of

the

server

application

developer.

You

can

use

the

class

to

implement

the

manager

functions

for

the

server

interface

or

to

create

classes

that

are

derived

from

either

the

abstract

or

concrete

stub

class.

24

TXSeries™:

Encina

Object-Oriented

Programming

Guide

The

abstract

server

class

is

the

base

server

class

for

the

interface.

You

cannot

create

an

object

of

this

class.

However,

you

can

derive

a

class

from

it

and

then

implement

manager

functions

using

this

derived

class

and

create

objects

of

this

derived

class.

The

abstract

server

class

is

itself

derived

from

the

OtsInterfaceMgr

class,

which

provides

functionality

for

creating

implementation

objects

and

exporting

them

to

the

namespace.

The

myAccountMgr

class

derived

from

the

accountMgrAbstract

class

in

Figure

16

is

not

generated

by

TIDL.

You

typically

define

such

a

class

in

order

to

specialize

the

functionality

defined

in

the

generated

abstract

class

from

which

it

is

derived.

The

manager

functions

If

you

want

to

implement

only

the

interface

functions

as

defined

in

the

generated

classes,

use

the

concrete

class.

If

you

need

to

modify

the

class

(to

define

additional

member

variables,

for

example)

or

implement

an

implementation

object

that

exports

multiple

interfaces,

you

must

define

a

class

that

is

derived

from

the

abstract

class.

Figure

17

shows

an

example

of

using

the

concrete

server

class

(the

accountMgr

class),

to

implement

the

manager

functions

for

the

account

interface

(debit,

credit,

and

QueryBalance

specified

in

Figure

10

on

page

19).

Note

that

parameters

of

the

function

are

defined

by

using

the

TIDL

data

types.

In

this

example,

the

manager

functions

are

implemented

in

a

separate

file

named

manager.C.

Figure

16.

Server

class

hierarchy

void

accountMgr::credit(idl_short_float

amount)

{

//

Perform

credit

operations

...

}

void

accountMgr::debit(idl_short_float

amount)

{

//

Perform

debit

operations

...

}

idl_short_float

accountMgr::debit(void)

{

//

Perform

QueryBalance

operations

...

}

Figure

17.

Implementing

the

manager

functions

of

the

account

interface

Chapter

4.

Developing

Encina++/DCE

applications

25

Creating

implementation

objects

In

both

the

abstract

and

concrete

stub

classes

that

are

generated

by

the

TIDL

compiler,

two

constructors

are

defined

automatically.

These

constructors

are

used

to

create

and

register

implementation

objects

to

which

client

proxy

objects

can

bind.

The

difference

between

the

two

constructors

is

the

way

in

which

a

universal

unique

identifier

(UUID)

is

assigned

to

the

created

implementation

object:

v

If

the

constructor

does

not

take

an

object

UUID

as

an

argument,

Encina++

creates

a

UUID

and

assigns

it

to

the

implementation

object.

v

If

the

constructor

takes

an

object

UUID

as

an

argument,

that

UUID

is

assigned

to

the

implementation

object.

Note:

The

server-object

constructors

defined

in

the

generated

files

include

two

additional

parameters

by

default:

the

defaultAcl

parameter

and

the

numThreads

parameter.

These

two

parameters

are

not

implemented

for

this

release

of

Encina++;

values

specified

for

these

parameters

are

ignored.

In

general,

most

applications

can

create

implementation

objects

without

specifying

object

UUIDs

for

them.

Situations

in

which

you

possibly

need

to

assign

a

specific

object

UUID

to

an

implementation

object

are

rare.

In

the

example

account

interface,

two

identical

constructors

are

defined

for

the

accountMgrAbstract

class

and

for

the

accountMgr

class.

Figure

18

provides

an

example

of

creating

an

implementation

object

of

the

accountMgr

class.

The

object

name,

accountMgrObj,

is

the

name

used

by

the

client

application

if

the

client

needs

to

bind

to

a

specific

implementation

object

as

described

shown

in

Figure

13

on

page

22.

If

no

name

is

passed,

an

unnamed

object

is

created.

Figure

19

on

page

27

shows

creation

of

an

implementation

object

of

the

accountMgr

class

where

the

UUID

associated

with

the

object

is

specified

by

the

application.

int

main(int

argc,

char

*argv[])

{

//

Process

command-line

arguments

...

//

Create

a

server

object

Encina::Server

server;

//

Initialize

the

server

server.Initialize();

//

Create

an

accountMgr

object

to

which

client

account

objects

can

bind

accountMgr

account1("accountMgrObj");

//

Listen

for

incoming

RPCs

server.Listen(Encina::Server::SERIALIZE_TRPCS_AND_TRANSACTIONS);

...

}

Figure

18.

Creating

an

implementation

object

for

the

accountMgr

class

26

TXSeries™:

Encina

Object-Oriented

Programming

Guide

Servers

and

objects

in

CDS

Encina++

clients

can

bind

to

servers

in

four

different

ways:

v

By

server

name

v

By

object

name

v

By

interface

v

By

object

reference

This

section

describes

the

CDS

entries

used

to

support

binding

by

server

name,

interface,

and

object

name.

See

“Binding

by

object

reference”

on

page

29

for

more

information

on

binding

by

object

reference.

All

Encina

Monitor

application

servers

register

RPC

binding

entries

with

CDS.

Monitor

application

servers

consist

of

a

group

of

processing

agents

(PAs),

and

each

PA

is

a

distinct

process.

Each

PA

registers

its

binding

entry

with

CDS;

the

location

of

the

entry

is

determined

by

the

name

of

the

PA,

which

has

the

following

form:

/.:/monitorCellname/server/serverName_paNumber

The

monitorCellName

is

the

name

of

the

Monitor

cell

in

which

the

server

runs.

The

serverName

is

the

name

configured

for

the

group

of

PAs.

Number

is

the

number

assigned

to

the

PA

when

it

starts;

the

numbering

for

PAs

starts

at

0.

The

binding

entry

under

a

the

name

of

a

PA

contains

the

information

needed

by

a

client

to

contact

that

PA.

Each

Monitor

server

also

registers

an

RPC

group

under

the

name

of

the

server,

which

has

the

following

form:

/.:/monitorCellname/server/serverName

This

group

contains

the

names

of

each

PA

for

the

server.

This

group

is

used

by

clients

that

bind

to

a

named

server.

A

client

looks

up

the

name

of

the

server

and

obtains

the

binding

entry

for

a

PA.

Internally,

the

Monitor

uses

the

name

of

the

server

to

select

a

PA

and

uses

the

name

of

the

PA

to

retrieve

the

binding

entry

for

the

PA.

Encina++

servers

that

create

named

objects

also

register

information

in

the

CDS

/.:/monitorCellname/objects

directory

and

with

the

endpoint

mapper.

Servers

that

create

unnamed

objects

register

them

only

with

the

endpoint

mapper.

For

servers

that

create

named

objects,

two

distinct

types

of

entries

are

stored

in

the

CDS

/.:/monitorCellname/objects

directory:

v

Object

groups:

RPC

groups

named

by

a

combination

of

the

UUID

of

the

interface

and

the

name

of

the

object

v

Interface

groups:

RPC

groups

named

by

the

UUID

of

the

interface

The

name

of

an

object

group

consists

includes

the

interface

UUID,

a

colon

(:),

and

the

name

of

the

object,

as

follows:

int

main(int

argc,

char

*argv[])

{

//

Process

command-line

arguments,

create

a

server

object,

initialize

the

server

...

//

Create

an

accountMgr

object

to

which

client

account

objects

can

bind

accountMgr

account1("cb5f8b98-ba8c-11d1-83f8-9e6204baa77",

"accountMgrObj");

...

}

Figure

19.

Creating

an

implementation

object

for

the

accountMgr

class

with

UUID

specified

Chapter

4.

Developing

Encina++/DCE

applications

27

/.:/monitorCellname/objects/interfaceUUID:objectName

This

entry

contains

the

names

of

the

all

the

PAs

that

support

the

combination

of

interface

and

named

object.

The

UUID

of

the

object

is

also

stored

with

the

group.

This

group

is

used

by

clients

that

bind

to

a

named

object.

The

name

of

an

interface

group

includes

the

UUID

followed

by

a

colon

(:),

as

follows:

/.:/monitorCellname/objects/interfaceUUID:

This

entry

contains

the

names

of

the

object

groups

that

share

the

interface

UUID.

This

group

is

used

by

clients

that

bind

by

interface.

For

example,

suppose

an

application

makes

use

of

two

interfaces,

merchandise

and

merchandise_admin.

The

application

provides

two

single-PA

application

servers,

server1

and

server

2;

server1

exports

the

merchandise

interface,

and

server2

exports

both

interfaces.

Specifically,

server1

creates

a

named

object,

merchOjb1,

that

supports

the

merchandise

interface.

The

other

server,

server2,

creates

two

named

objects;

merchOjb2

supports

the

merchandise

interface,

and

adminObj

supports

the

merchandise_admin

interface.

These

servers

create

three

object

groups

and

two

interface

groups

in

the

CDS

/.:/monitorCellname/objects

directory.

One

object

group

is

created

for

each

combination

of

interface

and

object

name,

and

each

group

contains

the

names

of

all

PAs

that

support

the

interface-object

combination.

For

server1,

which

supports

a

single

interface,

and

server2,

which

supports

two

interfaces,

a

total

of

three

object

groups

is

created,

as

follows:

v

For

server1:

merchandiseUUID:merchObj1.

This

group

contains

the

CDS

name

/.:/monitorCellName/server/server1_pa0

v

For

server2:

–

merchandiseUUID:merchObj2,

which

contains

the

CDS

name

/.:/monitorCellName/server/server2_pa0

–

merchandise_adminUUID:adminObj,

which

contains

the

CDS

name

/.:/monitorCellName/server/server2_pa0

One

interface

group

is

created

for

each

interface

exported

in

the

application.

For

server1and

server2,

which

collectively

support

the

merchandise

interface

and

the

merchandise_admin,

two

interface

groups

are

created,

as

follows::

v

For

the

merchandise

interface,

the

group

merchandiseUUID:.

This

group

refers

the

following

object

groups:

–

merchandiseUUID:merchObj1

–

merchandiseUUID:merchObj2

v

For

the

merchandise_admin

interface,

the

group

merchandise_adminUUID:.

This

group

refers

to

the

object

group

merchandise_adminUUID:adminObj

A

client

binding

by

interface

to

the

merchandise

interface

uses

that

interface

group

to

select

an

object

group,

from

which

an

appropriate

PA

is

selected.

A

client

binding

to

the

object

named

adminObj

chooses

that

object

group,

from

which

an

appropriate

PA

is

selected.

Building

servers

A

simple

server

application

is

made

up

of

the

following:

28

TXSeries™:

Encina

Object-Oriented

Programming

Guide

v

A

source

file

for

the

server

that

listens

for

remote

requests;

this

file

must

include

the

header

file

defining

the

implementation

class

for

the

server

interface.

v

A

source

file

that

implements

the

functions

for

the

server

interface.

v

A

server

stub

file

generated

by

the

TIDL

compiler.

v

A

server

stub

file

generated

by

the

IDL

compiler.

Using

the

example

filenames

shown

in

Figure

11

on

page

20,

Figure

20

illustrates

the

process

used

to

build

Encina++/DCE

server

applications.

In

the

first

part

of

the

process,

the

following

source

files

must

be

compiled:

v

server.C,

which

is

the

server

program.

This

file

must

include

the

accountTS.H

header

file

(which

in

turn

includes

the

account.h

header

file),

the

manager.H,

and

the

appropriate

Encina

header

files

described

in

“Compilation

issues,”

on

page

71.

v

manager.C,

which

is

the

file

containing

the

source

code

that

implements

the

manager

functions.

v

accountTS.C,

which

is

the

server

stub

file

generated

by

the

TIDL

compiler.

v

account_sstub.c,

which

is

the

server

stub

file

generated

by

the

DCE

IDL

compiler.

After

compilation,

the

resulting

object

files

must

be

linked

with

the

appropriate

Encina,

DCE,

and

platform-specific

library

files

described

in

“Compilation

issues,”

on

page

71.

Running

servers

Encina++/DCE

Monitor

server

applications

are

typically

started

by

using

Encina

administrative

tools

such

as

Enconsole.

Refer

to

the

Encina

Administration

Guide

Volume

1:

Basic

Administration

for

information

on

using

Encina’s

administrative

tools.

Binding

by

object

reference

Implementation

objects

can

be

created

dynamically,

that

is,

on

demand

by

a

client.

In

this

way,

a

server

does

not

need

to

instantiate

many

different

but

infrequently

used

objects.

For

example,

in

a

banking

application

where

each

account

is

represented

by

an

account

object,

there

are

many

accounts,

but

each

individual

Figure

20.

Building

Encina++/DCE

servers

Chapter

4.

Developing

Encina++/DCE

applications

29

account

is

seldom

accessed.

Binding

by

object

reference

enables

the

server

to

instantiate

an

object

for

an

account

as

needed.

A

factory

is

an

interface

whose

manager

functions

create

and

delete

objects

of

another

interface

class.

The

procedure

for

binding

by

object

reference

includes

the

following

steps:

v

The

server

exports

a

factory

object

rather

than

an

implementation

object.

v

The

client

creates

a

factory

proxy

and

binds

to

the

server

factory

object.

v

The

client

requests

the

creation

of

a

server

object.

v

The

server

returns

an

object

reference.

v

The

client

creates

another

proxy

and

binds

by

reference

to

the

server

object.

v

The

client

tells

the

factory

to

delete

the

server

object.

Note:

The

following

sections

describe

the

mechanics

of

writing

the

factory

interface

and

factory

functions.

The

application

must

manage

the

state

of

these

created

objects

and

do

garbage

collection

as

required.

Writing

the

factory

interface

To

add

factory

support

to

an

application,

you

must

write

an

additional

factory

interface

for

each

application

interface.

Your

application,

therefore,

can

require

several

additional

factory

interfaces.

Like

other

interface

definitions,

a

factory

interface

includes

a

UUID,

a

version

number,

a

name,

and

a

set

of

function

prototypes.

Apart

from

the

UUID

and

the

name,

the

factory

interface

definitions

includes:

v

A

function

to

create

an

object

and

return

its

reference

v

A

function

to

destroy

an

object

The

factory

interface

must

also

import

the

file

ots/dce/otsObjectRef.idl.

An

example

factory

interface

(acctFactory.tidl)

is

shown

in

Figure

21.

As

with

any

application

interface,

the

client

and

the

server

programs

must

include

header

files

to

create

instances

of

each

factory

object

or

client

factory

proxy

object.

The

factory

interface

header

files

are

generated

by

using

the

TIDL

compiler

with

the

-ots

option,

as

is

done

with

application

interfaces,

and

by

running

the

IDL

compiler

on

the

IDL

file.

In

our

example,

the

header

file

for

the

client

is

acctFactoryTC.H.

It

contains

a

class

called

acctFactory,

comprising

class

constructors

for

creating

client

factory

proxy

objects

and

a

member

for

each

function

in

the

factory

interface

(in

our

example,

Create

and

Delete).

The

server-side

header

file

is

acctFactoryTS.H.

It

contains

two

classes

(one

abstract

/*

TIDL

file

for

an

Encina++

factory

interface

[uuid(653853c4-3210-11d0-936205c9aa77),

version(1.0)]

interface

acctFactory

{

import

"ots/dce/otsObjectRef.idl";

ObjectRef*

Create(

[in]

handle_t

handle,

[in,

out]

uuid_t

*createdObject);

void

Delete(

[in]

handle_t

handle,

[in]

uuid_t

createdObject);

}

Figure

21.

An

example

factory

interface

definition

30

TXSeries™:

Encina

Object-Oriented

Programming

Guide

class

and

one

concrete

class),

in

our

example,

acctFactoryMgrAbstract

and

acctFactoryMgr.

It

also

includes

two

class

constructors

(one

by

name

only

and

one

by

name

and

UUID),

and

a

member

for

each

function

in

the

factory

interface.

Writing

functions

to

create

and

delete

objects

The

next

step

is

to

implement

the

factory

interface

manager

functions

in

the

server

program.

Every

interface

derives

from

the

class

otsInterfaceMgr,

which

contains

(among

other

methods)

GetObjectRef

and

GetUuid.

These

functions

are

members

of

any

interface

and

are

used

by

a

factory

to

identify

the

object

and

to

associate

the

UUID

with

an

ObjectRef

structure.

In

our

example,

the

acctFactoryMgr::Create

function

is

implemented

as

shown

in

Figure

22.

The

function

takes

an

optional

UUID

(or

creates

one),

and

returns

a

reference

to

an

object

of

the

type

accountMgr

(a

server

class

derived

from

the

account

interface

shown

in

“Making

operations

transactional”

on

page

19).

To

delete

an

object,

a

factory

retrieves

the

UUID

of

the

object

and

then

deletes

the

object,

as

shown

in

Figure

23.

Supporting

factories

in

the

server

program

To

use

a

factory,

a

server

must

include

the

factory

interface

header

file

and

declare

the

factory

object

during

initialization

(called

AccountFactory

in

Figure

24

on

page

32).

ObjectRef*

accountFactoryMgr::Create(uuid_t*

id)

{

accountMgr

*acctObject;

unsigned32

ignore;

//If

no

UUID

is

passed

in,

create

one.

if(uuid_is_nil(id,

&

ignore)){

acctObject

=

new

accountMgr();

Uuid

uuid

=

acctObject->GetUuid();

memmove(id,

(uuid_t*)

uuid,

sizeof(uuid_t));

}

//Otherwise,

use

the

UUID

passed

in.

else

{

Uuid

*objP

=

new

Uuid(id);

acctObject

=

new

accountMgr(*objP);

}

return

(&acctObject->GetObjectRef());

}

Figure

22.

Example

of

a

function

to

create

an

object

void

acctFactoryMgr::Delete(uuid_t

id)

{

accountMgr

*acctObject

=

(accountMgr

*)

GetObject(id);

delete

acctObject;

}

Figure

23.

Example

of

a

function

to

delete

an

object

Chapter

4.

Developing

Encina++/DCE

applications

31

Supporting

factories

on

the

client

The

client

program

must

include

the

header

files

for

any

factory

interface

and

use

factory

objects

in

the

function

prototypes.

The

client

program

then

binds

to

the

server’s

exported

factory

object

(in

our

example,

AccountFactory,

shown

in

Figure

24),

creating

a

client

factory

proxy

object

(acctCreator),

as

follows:

int

main(int

argc,

char

**argv)

{

[...]

//Declare

a

proxy

factory

object

acctFactory

acctCreator(

"AccountFactory");

}

The

example

function

definitions

shown

in

Figure

25

are

in

the

client

program.

The

CreateRemoteObject

function

calls

the

factory’s

Create

function

and

returns

an

object

reference.

The

DeleteRemoteObject

function

calls

the

factory’s

Delete

function

and

returns

nothing.

Figure

26

on

page

33

shows

how

these

functions

appear

in

the

client

program.

Before

an

RPC

is

a

made

to

a

server

manager

function,

the

client

program

calls

the

/*

Header

files

...

*/

#include

<accountTS.H>

/*

application

interface

*/

#include

<acctFactoryTS.H>

/*

factory

interface

*/;

[...]

int

main(int

argc,

char

**argv)

{

[...]

try{

//Declare

a

factory

object

instead

of

an

implementation

object.

acctFactoryMgr

acctFactory("AccountFactory");

[...]

}

catch{

[...]

}

return

0;

}

Figure

24.

Declaring

the

factory

object

in

the

server

program

ObjectRef

*CreateRemoteObject(

acctFactory

*factoryP,

uuid_t

*objectUuidP)

{

ObjectRef

*ref

=

factoryP->Create(objectUuidP);

return(ref);

}

void

DeleteRemoteObject(

acctFactory

*factoryP,

uuid_t

*objectUuid)

{

factoryP->Delete(objectUuid);

}

Figure

25.

Requesting

and

deleting

server

objects

32

TXSeries™:

Encina

Object-Oriented

Programming

Guide

CreateRemoteObject

function

to

request

that

the

factory

create

an

instance

of

the

appropriate

application

interface

class;

the

function

returns

an

object

reference.

The

client

program

uses

the

object

reference

to

declare

the

client

proxy

object.

The

binding

occurs

when

the

server

manager

function

is

called.

After

doing

any

tasks

required

by

the

application,

the

client

calls

the

DeleteRemoteObject

function

to

destroy

the

object,

and

the

client

program

frees

the

storage

used

by

the

object

reference.

Using

exceptions

in

Encina++/DCE

The

Encina++

exception

classes

encapsulate

DCE

exceptions,

enabling

exceptions

to

be

thrown

by

servers

and

caught

by

clients

to

indicate

that

an

error

occurred

during

the

execution

of

an

RPC.

C++

exceptions

can

be

used

to

handle

application-specific

errors

local

to

the

client

or

server.

Encina++/DCE

user-defined

exceptions

are

implemented

as

DCE

named

exceptions,

enabling

the

client

to

recognize

an

exception

thrown

by

the

server

by

name.

Defining

exceptions

To

define

a

named

exception

for

an

Encina++

application,

declare

it

in

the

header

of

the

TIDL

file

for

an

interface.

When

the

TIDL

file

is

compiled,

it

creates

classes

for

the

named

exception;

these

classes

are

derived

from

the

OtsDceExceptions::UserException

class.

int

main(int

argc,

char

**argv)

{

//Process

command

line

arguments

and

prompt

user

for

instructions

...

try{

//

Declare

a

proxy

factory

object

//

called

acctCreator

acctFactory

acctCreator(

"AccountFactory");

//

Begin

transaction.

//

Perform

work

//

Call

the

factory

to

create

an

object

and

return

its

identifier

uuid_t

objectUuid;

ObjectRef

*ref

=

CreateRemoteObject(

&acctCreator,

&objectUuid);

//

Use

the

object’s

identifier

to

declare

the

client

proxy

object

account

account1(ref);

//

Call

a

member

function

of

the

account

class

to

bind

to

a

remote

account

//

object

account1.debit(amount);

//

Destroy

the

factory-created

object

and

free

the

storage

//

for

the

reference

DeleteRemoteObject

(&acctCreator,

objectUuid);

rpc_ss_client_free(ref);

//End

transaction

}

catch{

cerr

<<

"An

exception

was

raised."

<<

end1’

Encina::Client::Exit(1);

}

Encina::Client::Exit(0);

}

Figure

26.

Binding

by

object

reference

Chapter

4.

Developing

Encina++/DCE

applications

33

In

Figure

27,

an

example

header

for

the

account

interface

declares

an

exception

named

insufficient_funds.

Note

that

since

the

original

version

of

the

TIDL

file

did

not

include

the

exception,

the

version

number

has

been

increased

to

2.0.

When

the

TIDL

file

for

the

account

interface

is

compiled,

it

defines

an

exception

class

called

account::insufficient_funds

in

both

the

client

and

server

stubs

generated

by

the

TIDL

compiler.

The

account::insufficient_funds

exception

can

be

thrown

by

the

server

and

caught

by

the

client.

See

“Handling

errors”

on

page

15

for

general

information

on

throwing

and

catching

exceptions

in

Encina++.

Note:

If

you

use

the

Encina++/DCE

classes

to

define

an

exception

but

do

not

specify

it

as

a

named

exception

in

the

TIDL

file,

the

client

cannot

catch

the

exception

by

name

if

it

is

thrown

by

the

server.

The

client

can

catch

the

exception

by

using

the

OtsExceptions::Any

class,

but

named

exceptions

are

usually

preferred

because

they

provide

finer

control

over

exception

handling.

Throwing

exceptions

You

can

throw

Encina++

system

exceptions

in

addition

to

exceptions

that

you

define.

For

example,

as

shown

in

Figure

28,

your

manager

function

can

throw

the

OtsExceptions::TranAborted

exception

as

an

alternative

way

to

abort

a

transaction.

Catching

exceptions

In

Encina++,

you

can

catch

user-defined

exceptions

and

system

exceptions.

Figure

29

shows

an

example

of

catching

a

user-defined

exception

named

insufficient_funds

or

the

OtsExceptions::TranAborted

system

exception.

In

addition

to

catching

specific

exceptions,

the

hierarchy

of

the

Encina++

exception

classes

allows

you

to

catch

exceptions

by

class.

You

can

catch

any

Encina++

system

[uuid(002068a4-f049-1b28-bdfc-c037cf6a0000),

version(2.0),

exceptions(insufficient_funds)]

interface

account{

...

}

Figure

27.

Sample

TIDL

declaration

for

a

user-defined

exception

if

(invalid_account)

throw

OtsExceptions::TranAborted();

Figure

28.

Throwing

Encina++

system

exceptions

try

{

//

call

to

one

or

more

functions

that

can

throw

the

//

insufficient_funds

or

OtsExceptions::TranAborted

exception

}

catch(account::insufficient_funds){

//

error

handling

for

the

named

exception

}

catch(OtsExceptions::TranAborted){

//

error

handling

for

the

system

exception

}

Figure

29.

Catching

exceptions

in

Encina++

34

TXSeries™:

Encina

Object-Oriented

Programming

Guide

exceptions

by

specifying

the

class

of

the

exception

from

which

all

Encina++

system

exceptions

are

derived,

OtsExceptions::Any.

For

example,

you

can

use

the

series

of

catch

statements

shown

in

Figure

30

to

catch

a

specific

Encina++

exception

or

any

Encina++

exception

thrown

by

the

server.

If

the

server

throws

the

OtsExceptions::TranAborted

exception,

it

is

caught

by

the

first

catch

statement.

Any

other

Encina++

exception

is

caught

by

the

second

catch

statement.

When

Transactional-C++

is

used

(see

Chapter

6,

“Transaction

processing

with

Transactional-C++,”

on

page

41),

an

uncaught

exception

aborts

a

transaction.

You

can

get

a

reference

to

the

exception

object

caught

by

specifying

a

variable

name

for

it

in

the

argument

to

catch.

For

example,

you

can

get

the

exception

object

caught

with

the

OtsExceptions::Any

exception

and

print

the

string

associated

with

the

error

code

as

shown

in

Figure

31.

If

the

server

throws

an

Encina++

exception,

the

exception

is

caught

by

the

catch

statement,

and

the

exception

object

is

returned

in

the

exception

variable.

Signal

handling

Encina

has

a

built-in

signal-handling

capability.

All

Encina

clients

and

Monitor-based

servers

automatically

handle

the

following

signals:

SIGHUP,

SIGINT,

and

SIGTERM.

When

an

Encina++/DCE

client

receives

any

of

these

signals,

it

aborts

any

outstanding

transactions

and

exits.

When

an

Encina++/DCE

server

receives

the

SIGINT

or

SIGTERM

signal,

it

aborts

any

outstanding

transactions

and

exits;

when

an

Encina++/DCE

server

receives

the

SIGHUP

signal,

it

requests

a

Monitor

state

dump.

Although

it

is

not

recommended,

you

can

create

a

customized

signal

handler

for

an

Encina++

application.

A

customized

signal

handler

can

handle

any

signal.

If

you

use

a

customized

signal

handler,

the

signal

handler

function

must

call

any

previously

installed

signal

handler

after

the

customized

signal

handler

has

performed

any

required

work.

try

{

//

call

to

one

or

more

functions

that

can

throw

an

Encina++

//

exception

}

catch(OtsExceptions::TranAborted){

//

error

handling

for

the

system

exception

}

catch(OtsExceptions::Any){

//

error

handling

for

any

Encina++

exception

}

Figure

30.

Catching

Encina++

exceptions

by

class

try

{

//

call

to

one

or

more

functions

that

can

throw

an

Encina++

//

exception

}

catch(OtsExceptions::Any

&exception){

//

error

handling

for

any

Encina++

exception

cerr

<<

exception

<<

endl;

}

Figure

31.

Getting

a

reference

to

an

exception

object

Chapter

4.

Developing

Encina++/DCE

applications

35

Naming

in

Encina++

Toolkit

applications

Encina++/DCE

applications

typically

run

within

the

Monitor

environment,

but

non-Monitor

applications

can

be

written.

These

are

referred

to

as

Toolkit

applications,

and

they

typically

use

DCE

for

naming

and

security.

However,

Encina++

Toolkit

applications

do

not

require

the

use

of

CDS

to

locate

bindings

to

Encina++

objects.

As

an

alternative

to

using

CDS,

clients

and

servers

can

share

a

binding

file

that

defines

the

location

of

servers,

server-side

objects,

and

server-side

interfaces,

depending

on

the

type

of

binding

being

used

in

the

application.

This

allows

Encina++

applications

to

be

written

without

relying

on

the

availability

of

CDS

or

DCE

security.

Using

Toolkit

mode

with

CDS

In

this

mode,

an

Encina++

server

registers

itself

and

its

objects

with

CDS.

The

following

environment

variables

need

to

be

set

for

the

client

and

server:

setenv

ENCINA_TK_MODE

1

setenv

ENCINA_CDS_ROOT

/.:/CdsRoot

where

CdsRoot

is

the

fully

qualified

path

name

of

the

server.

These

variables

are

used

in

addition

to

any

other

environment

variables

required

by

the

client

and

server.

Using

Toolkit

mode

without

CDS

In

this

mode,

Encina++

servers

and

clients

share

a

binding

file.

The

following

environment

variables

need

to

be

set

for

the

client

and

server:

setenv

ENCINA_BINDING_FILE

bindingFile

setenv

ENCINA_TK_MODE

1

setenv

ENCINA_CDS_ROOT

/.:/CdsRoot

where

bindingFile

is

the

path

name

of

the

binding

file

and

CdsRoot

is

the

fully

qualified

path

name

of

the

server.

These

variables

are

in

addition

to

any

other

environment

variables

required

by

the

client

and

server.

The

contents

of

the

binding

file

depend

on

the

type

of

binding

being

used

in

the

application,

as

shown

in

Table

3.

Binding

by

object

reference

does

not

require

an

entry

in

the

binding

file

because

the

application

already

possesses

the

required

binding.

Table

3.

Binding

file

entries

Type

of

binding

Binding

file

entry

By

object

reference

None

By

interface

$ENCINA_CDS_ROOT/interface/interfaceName

ncadg_ip_udp:server[port]

By

server

name

$ENCINA_CDS_ROOT/server/serverName

ncadg_ip_udp:server[port]

By

object

name

$ENCINA_CDS_ROOT/object/objectName

ncadg_ip_udp:server[port]

In

Table

3,

interfaceName

is

the

name

of

the

Encina++

interface

(binding

by

interface);

objectName

is

the

name

of

the

exported

object

(binding

by

object);

serverName

is

the

name

of

the

Encina++

server

(binding

by

server);

and

server

is

the

name

of

the

corresponding

Encina++

server

that

exports

the

interface

(this

is

applicable

to

all

three

binding

methods).

36

TXSeries™:

Encina

Object-Oriented

Programming

Guide

Consider

the

following

example:

Two

servers,

S1

and

S2,

are

running

on

machines

siam

and

kramer

respectively.

Server

S1

exports

interface

I1

and

named

objects

011

and

012.

Server

S2

exports

interface

I2

and

the

named

object

021.

The

binding

files

must

contain

entries

similar

to

the

following:

/.:/cdsRoot/server/S1

ncadg_ip_udp

:

siam

[2021]

/.:/cdsRoot/interface/I1

ncadg_ip_udp

:

siam

[2021]

/.:/cdsRoot/object/011

ncadg_ip_udp

:

siam

[2021]

/.:/cdsRoot/object/012

ncadg_ip_udp

:

siam

[2021]

/.:/cdsRoot/server/S2

ncadg_ip_udp

:

kramer

[2042]

/.:/cdsRoot/interface/I2

ncadg_ip_udp

:

kramer

[2042]

/.:/cdsRoot/object/021

ncadg_ip_udp

:

kramer

[2042]

Chapter

4.

Developing

Encina++/DCE

applications

37

38

TXSeries™:

Encina

Object-Oriented

Programming

Guide

Chapter

5.

Transaction

processing

overview

This

chapter

introduces

the

two

transaction-demarcation

interfaces

for

Encina++:

Transactional-C++

(Tran-C++)

and

Encina’s

implementation

of

the

Object

Management

Group’s

(OMG)

Object

Transaction

Service

(OTS).

It

also

provides

some

guidelines

for

using

the

two

interfaces

in

the

same

application.

The

details

of

using

the

two

transaction

interfaces

are

discussed

in

the

following

chapters:

v

Chapter

6,

“Transaction

processing

with

Transactional-C++,”

on

page

41

provides

details

on

using

Transactional-C++

(Tran-C++).

v

Chapter

7,

“Transaction

processing

with

OMG

OTS

for

Encina++,”

on

page

55

provides

details

on

using

the

Object

Management

Group’s

(OMG)

Object

Transaction

Service

(OTS).

More

general

information

on

transaction

processing

can

be

found

in

the

Encina

Transactional

Programming

Guide.

Introduction

to

Transactional-C++

Tran-C++

provides

extensions

to

the

C++

programming

language

that

simplify

the

creation

and

management

of

distributed

transactions

in

Encina++

applications.

These

extensions

include

constructs,

macros,

and

classes.

v

Tran-C++

provides

constructs

that

you

can

use

to

create

transactions,

suspend

and

resume

transactions,

and

catch

exceptions

thrown

during

the

execution

of

transactions.

v

Tran-C++

defines

macros

that

you

can

use

to

abort

transactions,

retrieve

transaction

identifiers

in

various

contexts,

and

specify

and

return

abort

information

associated

with

a

transaction.

v

Tran-C++

defines

classes

that

encapsulate

objects

used

to

represent

transactions,

abort

reasons

for

transactions,

and

callback

functions

that

can

be

registered

for

transaction-event

notification.

The

scope

of

a

transaction

is

defined

by

the

Tran-C++

construct

that

creates

that

transaction.

Each

Tran-C++

transaction

is

associated

automatically

with

a

single

thread

that

executes

on

its

behalf.

Function

calls

made

within

the

scope

of

a

transaction

are

executed

on

the

thread

associated

with

the

transaction.

A

thread

can

execute

on

behalf

of

only

one

transaction

at

a

time.

In

addition,

each

transaction

is

associated

with

an

exception

scope.

When

a

transaction

is

aborted

by

a

participant,

the

Encina++

runtime

throws

an

Encina++

exception.

Tran-C++

applications

can

throw

an

application-specific

exception

to

abort

a

transaction

explicitly.

Exceptions

that

are

thrown

within

the

scope

of

the

transaction

but

not

caught

within

the

scope

of

that

transaction

cause

the

transaction

to

abort

automatically.

The

Tran-C++

transaction

constructs

integrate

support

for

catching

exceptions

thrown

within

the

scope

of

a

transaction.

Chapter

6,

“Transaction

processing

with

Transactional-C++,”

on

page

41

describes

how

to

use

the

Tran-C++

interface

to

create

and

manage

transactions.

©

Copyright

IBM

Corp.

1999,

2004

39

Introduction

to

the

Encina

Object

Transaction

Service

The

Encina

Object

Transaction

Service

(OTS)

implements

the

Object

Management

Group’s

(OMG)

OTS

interface

for

transaction

demarcation.

The

OMG

OTS

interface

is

described

in

detail

in

the

specification

provided

by

the

OMG.

Encina’s

OTS

implementation

is

based

on

the

OMG

specification.

Encina++

provides

a

version

of

the

OTS

interface

that

supports

the

use

of

transactions

in

the

Distributed

Computing

Environment

(DCE).

Chapter

7,

“Transaction

processing

with

OMG

OTS

for

Encina++,”

on

page

55

covers

this

OTS

interface

for

Encina++.

The

Encina

OTS

interfaces

consist

of

C++

classes

and

data

types

that

enable

the

creation

and

management

of

distributed

transactions

in

Encina++

applications.

The

interfaces

allow

you

to

choose

between

two

transaction-demarcation

models

and

support

the

use

of

C++

exceptions.

Transaction-demarcation

models

The

OMG

OTS

interface

supports

two

models

for

transaction

demarcation.

In

the

implicit

model,

each

transaction

is

associated

automatically

with

the

current

thread

via

a

transaction

context.

A

thread’s

transaction

context

specifies

the

transaction

on

behalf

of

which

the

thread

is

executing.

Because

the

transaction

context

is

associated

with

the

calling

thread,

the

transaction

context

that

defines

a

transaction

is

passed

implicitly

to

objects.

In

the

explicit

model,

the

programmer

must

specify

that

an

object

is

part

of

a

transaction

by

explicitly

passing

the

transaction

context

as

a

parameter

to

a

member

function

invoked

on

the

object.

The

implicit

model

provides

a

simpler

interface

for

coding

transactional

applications

than

the

explicit

model.

Because

most

applications

use

the

implicit

model,

the

primary

focus

of

this

document

is

on

using

the

implicit

model

of

transaction

demarcation

in

Encina++

applications.

Only

a

brief

overview

of

the

explicit

model

is

provided

in

this

document.

For

information

on

writing

multithreaded

applications

using

either

model,

see

Chapter

3,

“Developing

distributed

applications,”

on

page

9.

Exceptions

OTS

uses

C++

exceptions

to

handle

error

conditions.

Typically,

a

transaction

is

enclosed

in

a

try

block

to

handle

exceptions

thrown

within

the

scope

of

the

transaction;

the

transaction

is

begun

at

the

start

of

the

try

block

and

committed

at

the

end

of

the

try

block.

Rollbacks

and

other

error

handling

can

be

done

in

the

catch

blocks

for

exceptions

thrown

within

the

scope

of

the

transaction.

Exceptions

defined

within

an

Encina

TIDL

interface

automatically

abort

an

associated

transaction.

40

TXSeries™:

Encina

Object-Oriented

Programming

Guide

|
|
|
|

|
|
|

Chapter

6.

Transaction

processing

with

Transactional-C++

This

chapter

introduces

transaction

processing

with

Tran-C++

and

provides

information

on

using

the

Tran-C++

classes,

constructs,

and

macros

in

Encina++

client

and

server

applications.

Refer

to

Chapter

5,

“Transaction

processing

overview,”

on

page

39

for

more

general

information

on

transaction

processing

in

Encina++.

For

information

on

interactions

between

Tran-C++

and

the

Object

Transaction

Service

(OTS),

see

“Interactions

between

Tran-C++

and

OTS

interfaces”

on

page

61.

Creating

transactions

You

can

use

the

transaction

construct

to

begin

a

transaction,

specify

which

operations

are

part

of

the

transaction,

and

specify

actions

to

take

when

the

transaction

completes.

A

transaction

construct

is

made

up

of

a

transaction

clause,

an

optional

onCommit

clause,

optional

onException

clauses,

and

an

onAnyException

clause.

(An

onAbort

clause

can

be

used

in

place

of

the

onAnyException

clause.)

Any

number

of

onException

clauses

can

be

specified.

The

transaction

clause

defines

the

scope

of

a

transaction;

all

operations

executed

within

that

scope

are

part

of

the

same

transaction.

The

transaction

ends

when

the

closing

brace

of

the

transaction

clause

is

reached

or

when

the

transaction

is

aborted.

Tran-C++

attempts

to

commit

a

transaction

if

all

the

statements

in

the

transaction

clause

are

executed

to

completion

without

aborting

the

transaction.

A

transaction

is

committed

only

after

all

the

participants

in

the

transaction

agree

to

commit.

If

the

transaction

commits,

any

statements

in

the

onCommit

clause

are

executed.

If

the

transaction

aborts

and

there

is

an

onException

clause

for

the

exception

that

caused

the

transaction

to

abort,

the

statements

in

that

clause

are

executed.

Otherwise,

the

statements

in

the

onAnyException

clause

are

executed.

The

example

in

Figure

32

illustrates

the

use

of

all

clauses.

transaction{

//

operations

that

are

part

of

the

transaction

account1.debit(amount);

}

onCommit{

//

operations

executed

after

the

transaction

commits

cout

<<

"The

transaction

committed."

<<

endl;

}

onException(account::invalid_amount,

except){

cout

<<

"The

amount

was

invalid."

cout

<<

"The

exception

was:

"

<<

exception

<<

endl;

cout

<<

"Transaction

aborted."

<<

endl;

}

onAnyException{

//

operations

executed

only

after

the

transaction

aborts

cout

<<

"The

transaction

aborted."

<<

endl;

}

Figure

32.

Creating

a

transaction

by

using

the

transaction

construct

©

Copyright

IBM

Corp.

1999,

2004

41

In

this

example,

the

only

operation

that

is

part

of

the

transaction

is

the

debit

function.

If

the

debit

function

is

executed

without

aborting

the

transaction

and

the

transaction

commits

successfully,

the

statement

in

the

onCommit

clause

is

executed,

printing

a

message

to

the

standard

output

stream.

If

the

debit

function

(or

another

function

called

by

debit)

aborts

the

transaction

and

throws

the

account::invalid_amount

exception,

the

statements

in

the

onException

clause

are

executed,

sending

a

different

message

to

the

standard

output

stream.

If

the

transaction

is

aborted

with

any

other

exception,

the

statement

in

the

onAnyException

clause

is

executed.

Each

Tran-C++

transaction

is

associated

with

a

single

thread

that

runss

on

its

behalf.

A

thread

can

run

on

behalf

of

only

one

transaction

at

a

time.

The

Encina

C++

interface

defines

the

TranPthread

class,

which

you

can

use

to

manage

transactional

threads

and

create

concurrent

transactions.

See

Chapter

3,

“Developing

distributed

applications,”

on

page

9

for

more

information.

Note:

It

is

illegal

to

transfer

control

(for

example,

using

a

return

or

goto

statement)

out

of

any

of

the

transaction

clauses.

Nesting

transactions

Tran-C++

allows

you

to

create

nested

transactions.

A

nested

transaction

is

a

transaction

begun

within

the

scope

of

another

transaction.

Nested

transactions

can

be

used

to

isolate

the

effects

of

failures

from

the

enclosing

transaction.

Two

types

of

nested

transactions

are

supported:

subtransactions

and

nested

top-level

transactions.

A

subtransaction

is

executed

within

the

scope

of

its

parent

transaction.

A

subtransaction

commits

with

respect

to

its

parent

transaction.

That

is,

if

the

subtransaction

commits

but

the

parent

transaction

aborts,

the

effects

of

the

subtransaction

are

rolled

back.

The

parent

transaction,

however,

does

not

rely

on

the

outcome

of

its

subtransactions

and

can

still

commit

even

if

the

subtransactions

abort.

Note

that

within

the

onException,

onAnyException,

and

onCommit

clauses

of

the

subtransaction,

the

subtransaction

is

complete,

and

thus

the

parent

of

the

subtransaction

is

the

current

transaction.

A

subtransaction

is

created

by

nesting

a

transaction

construct

within

the

transaction

clause

of

another

transaction,

as

shown

in

Figure

33

on

page

43.

42

TXSeries™:

Encina

Object-Oriented

Programming

Guide

A

nested

top-level

transaction

is

executed

outside

the

scope

of

its

parent

transaction.

A

nested

top-level

transaction

aborts

or

commits

independently

of

its

parent

transaction.

That

is,

if

the

nested

top-level

transaction

commits

but

the

parent

transaction

aborts,

the

nested

top-level

transaction

is

not

rolled

back.

As

with

subtransactions,

the

parent

transaction

does

not

rely

on

the

outcome

of

the

nested

top-level

transaction.

A

nested

top-level

transaction

is

created

by

nesting

a

topLevel

construct

within

the

transaction

clause

of

another

transaction,

as

shown

in

Figure

34

on

page

44.

transaction{

//

operations

that

are

part

of

the

parent

transaction

transaction{

//

operations

that

are

part

of

the

subtransaction

account1.debit(amount);

}

onCommit{

//

operations

executed

after

the

subtransaction

commits

cout

<<

"The

subtransaction

committed."

<<

endl;

}

onException(account::invalid_amount,

except){

//

operations

executed

after

the

subtransaction

//

aborts

as

a

result

of

the

specified

exception

cout

<<

"The

amount

was

invalid."

cout

<<

"The

subtransaction

aborted."

<<

endl;

}

onAnyException{

//

operations

executed

after

the

subtransaction

aborts

cout

<<

"The

subtransaction

aborted."

<<

endl;

}

account1.QueryBalance();

}

onCommit{

//

operations

executed

after

the

parent

transaction

commits

cout

<<

"The

transaction

committed."

<<

endl;

}

onAnyException{

//

operations

executed

after

the

parent

transaction

aborts

cout

<<

"The

transaction

aborted."

<<

endl;

}

Figure

33.

Creating

a

subtransaction

Chapter

6.

Transaction

processing

with

Transactional-C++

43

Suspending

and

resuming

transactions

Tran-C++

allows

you

to

suspend

and

resume

transactions.

For

example,

when

you

want

to

suspend

a

transaction

to

do

some

nontransactional

work.

As

another

example,

your

server

application

can

create

a

single

transaction

to

handle

requests

from

a

nontransactional

application;

the

application

can

suspend

and

resume

the

transaction

to

handle

subsequent

requests

rather

than

create

new

transactions

for

each

request.

Note

that

the

resources

that

a

transaction

is

accessing

remain

locked

while

the

transaction

is

suspended.

You

can

suspend

a

transaction

by

using

a

suspend

clause

instead

of

an

onCommit

clause

of

a

transaction

or

topLevel

construct.

If

the

transaction

is

not

aborted,

it

is

suspended

when

the

end

of

the

transaction

is

reached.

The

suspend

clause

has

one

parameter;

an

identifier

for

the

transaction

is

returned

in

this

parameter

when

the

transaction

is

suspended.

The

returned

value

can

be

used

to

resume

the

transaction.

Figure

35

on

page

45

shows

an

example

of

a

suspend

clause

used

in

a

transaction

construct.

transaction{

//

operations

that

are

part

of

the

parent

transaction

...

topLevel{

//

operations

that

are

part

of

the

topLevel

transaction

account1.debit(amount);

}

onException(account::invalid_amount,

except){

//

operations

that

are

executed

after

the

topLevel

transaction

aborts

//

as

a

result

of

the

specified

exception

cout

<<

"The

amount

was

invalid."

cout

<<

"The

subtransaction

aborted."

<<

endl;

}

onAnyException{

//

operations

that

are

executed

after

the

topLevel

transaction

aborts

cout

<<

"The

subtransaction

aborted."

<<

endl;

}

account1.QueryBalance();

}

onCommit{

//

operations

that

are

executed

only

after

the

parent

transaction

commits

cout

<<

"The

transaction

committed."

<<

endl;

}

onAnyException{

//

operations

that

are

executed

only

after

the

parent

transaction

aborts

cout

<<

"The

transaction

aborted."

<<

endl;

}

Figure

34.

Creating

a

nested

top-level

transaction

44

TXSeries™:

Encina

Object-Oriented

Programming

Guide

You

can

resume

a

suspended

transaction

by

using

the

resumeTran

construct.

Like

any

other

transaction,

a

resumed

transaction

can

be

committed,

suspended,

or

aborted.

A

pointer

identifying

the

transaction

to

be

resumed

must

be

passed

as

an

argument

to

the

resumeTran

clause.

The

argument

you

pass

must

be

the

value

returned

by

the

suspend

clause

that

suspended

the

transaction

you

want

to

resume.

Figure

36

shows

an

example

of

a

resumeTran

construct

that

resumes

the

transaction

suspended

in

Figure

35.

Getting

the

identity

of

a

transaction

Some

Tran-C++

macros

and

class

functions

require

you

to

specify

a

transaction

identifier

as

an

argument.

For

example,

you

specify

an

identifier

to

abort

a

transaction

other

than

the

current

transaction

or

to

set

a

timeout

for

a

transaction.

Tran-C++

defines

macros

that

allow

you

to

get

the

identity

of

transactions

in

various

scopes.

Because

transactions

are

managed

as

instances

of

the

Tran

class,

the

identity

of

a

transaction

is

returned

as

a

reference

to

a

Tran

object.

Using

Tran-C++,

you

can

retrieve

the

identity

of

the

current

transaction,

a

parent

transaction,

or

a

completed

transaction:

v

To

retrieve

the

identity

of

the

current

transaction,

you

can

call

the

getTran

macro

from

anywhere

within

the

scope

of

the

current

transaction.

Calling

the

getTran

macro

in

the

onCommit,

onException,

or

onAnyException

clause

of

a

nested

transaction

returns

the

identity

of

the

parent

transaction

because

the

onCommit,

onException,

and

onAnyException

clauses

of

a

nested

transaction

are

executed

within

the

scope

of

the

parent.

void

*id;

transaction{

//

operations

that

are

part

of

the

transaction

account1.debit(amount);

}

suspend(id){

//

operations

that

are

executed

after

the

transaction

is

suspended

cout

<<

"The

transaction

is

suspended."

<<

endl;

}

onAnyException{

//

operations

that

are

executed

only

after

the

transaction

aborts

cout

<<

"The

transaction

aborted."

<<

endl;

}

Figure

35.

Suspending

a

transaction

resumeTran(id){

//

operations

that

are

part

of

the

resumed

transaction

account1.debit(amount);

}

onCommit{

//

operations

that

are

executed

only

after

the

resumed

transaction

//

commits

cout

<<

"The

transaction

committed."

<<

endl;

}

onAnyException{

//

operations

that

are

executed

after

the

resumed

transaction

aborts

cout

<<

"The

transaction

aborted."

<<

endl;

}

Figure

36.

Resuming

a

suspended

transaction

Chapter

6.

Transaction

processing

with

Transactional-C++

45

v

To

retrieve

the

identity

of

the

parent

of

the

current

transaction

(that

is,

the

transaction

that

contains

the

current

transaction),

you

can

call

the

getContainingTran

macro

from

anywhere

within

the

scope

of

a

nested

transaction.

v

To

retrieve

the

identity

of

a

completed

transaction,

you

can

call

the

getCompletedTran

macro

from

the

onCommit,

onException,

or

onAnyException

clause

of

the

completed

transaction.

The

example

in

Figure

37

illustrates

valid

uses

of

the

macros

defined

to

retrieve

the

identity

of

a

transaction.

“Aborting

transactions”

on

page

47

describes

the

Tran-C++

macros

that

allow

you

to

get

abort

information

for

transactions

that

have

been

aborted.

Checking

transaction

status

The

Tran-C++

runtime

system

checks

the

status

of

a

transaction

every

time

an

associated

thread

executes

a

Tran-C++

statement.

Because

the

status

of

a

transaction

is

not

checked

until

execution

of

the

next

Tran-C++

statement,

the

transfer

of

control

to

the

onException

or

onAnyException

clause

can

be

delayed

if

the

transaction

was

not

aborted

by

a

Tran-C++

statement.

To

avoid

potentially

long

delays

in

the

transfer

of

control

in

applications

that

infrequently

use

Tran-C++

statements,

you

can

call

the

abortCheck

macro.

Calling

the

abortCheck

macro

forces

the

runtime

to

check

the

status

of

the

current

transaction

and

transfer

control

to

the

onAbort

clause

if

the

transaction

has

been

aborted.

transaction{

//

operations

that

are

executed

within

the

scope

of

the

top-level

//

transaction

cout

<<

"Current

transaction

ID:

"

<<

getTran()

<<

endl;

transaction{

//

operations

that

are

executed

within

the

scope

of

the

subtransaction

cout

<<

"Subtransaction

ID:

"

<<

getTran()

<<

endl;

cout

<<

"Parent

ID:

"

<<

getContainingTran()

<<

endl;

}

onAnyException{

//

nested

onAnyException

is

executed

within

the

scope

of

the

parent

//

transaction

cout

<<

"Parent

(now

current)

ID:

"

<<

getTran()

<<

endl;

cout

<<

"Aborted

transaction

ID:

"

<<

getCompletedTran()

<<

endl;

}

}

onCommit{

//

top-level

onCommit

executes

outside

the

scope

of

any

//

transaction

cout

<<

"Committed

transaction

ID:

"

<<

getCompletedTran()

<<

endl;

}

onAnyException{

//

top-level

onAnyException

executes

outside

the

scope

of

any

//

transaction

cout

<<

"Aborted

transaction

ID:

"

<<

getCompletedTran()

<<

endl;

}

Figure

37.

Getting

the

identity

of

a

transaction

in

different

contexts

46

TXSeries™:

Encina

Object-Oriented

Programming

Guide

The

abortCheck

macro

takes

no

arguments

and

returns

no

value.

Its

only

purpose

is

to

provide

a

means

for

the

Tran-C++

runtime

system

to

signal

a

long-running

application

that

a

transaction

has

aborted.

The

macro

has

no

effect

if

the

current

transaction

has

not

been

aborted.

Note:

Exceptions

thrown

by

the

abortCheck

macro

should

not

be

caught

by

the

application.

Aborting

transactions

A

transaction

can

be

aborted

by

the

Tran-C++

runtime

system,

by

any

participant

in

the

transaction,

or

by

a

Tran-C++

application.

Communications

or

data

access

failures

are

the

most

common

causes

of

runtime-system

aborts.

Your

application

can

abort

transactions

explicitly

by

using

the

Tran-C++

abortTran

macro

or

by

throwing

an

exception

that

is

not

caught

within

the

scope

of

the

transaction.

Each

Tran-C++

transaction

is

associated

automatically

with

an

exception

scope.

When

a

transaction

is

aborted,

the

OtsExceptions::TranAborted

exception

is

thrown,

causing

an

onException

or

onAnyException

clause

associated

with

the

aborted

transaction.

When

an

abort

is

detected

by

a

remote

application

that

is

performing

work

on

behalf

of

a

transaction,

the

remote

application

immediately

stops

performing

work

on

behalf

of

the

aborted

transaction,

the

remote

procedure

call

(RPC)

returns

to

the

calling

application,

and

control

is

transferred

to

the

onException

or

onAnyException

clause

of

the

transaction.

The

abortTran

macro

must

be

called

in

a

process

operating

within

the

scope

of

a

transaction.

Tran-C++

provides

several

definitions

for

the

abortTran

macro—each

with

default

values

for

optional

parameters—to

enable

you

to

abort

transactions

appropriately

for

your

application.

All

definitions

of

the

abortTran

macro

take

an

optional

argument

in

which

you

can

specify

a

particular

transaction

to

abort.

If

another

transaction

is

not

specified,

the

abortTran

macro

aborts

the

current

transaction.

Tran-C++

uses

abort

reasons

to

assign

and

retrieve

information

about

why

a

transaction

aborted.

Any

participant

in

the

transaction

can

determine

the

abort

reason

for

the

aborted

transaction.

All

definitions

of

the

abortTran

macro

require

that

an

abort

reason

be

specified

as

the

first

argument.

You

can

specify

the

reason

for

an

abort

in

one

of

several

ways:

as

an

abort

code,

an

abort

string,

an

AbortReason

object,

or

an

abort

reason

data

structure.

The

following

sections

describe

the

different

ways

to

define

abort

reasons

and

how

to

use

them

when

aborting

transactions.

Using

abort

codes

An

abort

code

is

a

signed

integer

constant

that

you

define

to

indicate

the

reason

why

a

transaction

aborted.

Using

abort

codes

to

specify

abort

reasons

enables

you

to

compare

abort

reasons

and

take

actions

based

on

the

codes.

If

you

use

abort

codes

to

identify

abort

reasons

in

your

Tran-C++

application,

define

a

different

abort

code

for

each

condition

under

which

the

application

aborts

transactions.

For

example,

an

application

can

define

abort

codes

to

identify

two

conditions

as

shown

in

Figure

38

on

page

48.

Chapter

6.

Transaction

processing

with

Transactional-C++

47

You

can

then

specify

one

of

the

abort

codes

for

the

abort

reason

of

an

aborted

transaction

by

passing

the

code

as

the

first

argument

to

the

abortTran

macro.

For

example,

the

statement

shown

in

Figure

39

can

be

used

to

abort

the

current

transaction

and

specify

an

abort

code

as

its

abort

reason.

The

abort

reason

for

the

aborted

transaction

contains

an

abort

code

of

0

(zero).

The

abortCode

macro

can

be

used

to

return

the

value

of

the

abort

code.

Although

abort

codes

provide

a

way

to

compare

and

test

abort

reasons,

they

do

not

provide

useful

printable

output.

Calling

the

abortReason

macro

in

an

onException

or

onAnyException

clause

of

a

transaction

aborted

with

an

abort

code

simply

returns

a

generic

string

generated

by

Tran-C++.

Tran-C++,

however,

does

allow

you

to

associate

an

abort

code

with

a

function

you

define

to

translate

codes

to

printable

strings.

The

abortTran

macro

accepts

an

optional

second

argument

if

an

abort

code

is

specified

for

the

abort

reason.

The

value

of

the

second

argument

must

be

a

Uuid

object

that

identifies

a

formatting

function

registered

for

the

abort

reason.

(If

a

value

is

not

specified

for

the

second

argument,

Tran-C++

provides

a

default

Uuid

object

that

identifies

a

formatting

function

that

is

used

internally

to

produce

generic

output.)

If

you

use

abort

codes

and

want

to

produce

printable

strings

for

your

abort

reasons,

you

must

provide

a

means

for

translating

codes

to

a

format

appropriate

for

your

application.

See

“Formatting

abort

reasons”

on

page

49

for

a

description

of

how

to

define

and

register

a

formatting

function

for

your

application.

Using

abort

strings

An

abort

string

is

a

character

string

that

you

can

use

to

specify

the

abort

reason

for

a

transaction.

Though

it

is

simpler

to

define

abort

reasons

with

strings

than

it

is

with

codes,

the

usefulness

of

abort

strings

is

limited.

Because

abort

strings

are

variable-length

strings

that

were

possibly

generated

in

a

different

National

Language

Support

(NLS)

locale,

they

cannot

be

compared

as

easily

as

abort

codes.

Also,

programs

that

use

abort

strings

are

more

difficult

to

internationalize

than

those

that

use

codes.

You

can

specify

a

string

as

the

abort

reason

by

passing

it

as

the

first

argument

to

the

abortTran

macro.

For

example,

the

statement

in

Figure

40

can

be

used

to

abort

the

current

transaction

and

specify

a

string

as

its

abort

reason.

The

abort

reason

for

the

aborted

transaction

contains

the

string

“User

cancelled

the

order.”

and

has

an

abort

code

of

0

(zero)

by

default.

Calling

the

abortReason

typedef

enum

{

CANCELED_BY_USER,

ACCESS_DENIED

}

local_abort_t;

Figure

38.

Example

definition

for

abort

codes

abortTran(CANCELED_BY_USER);

Figure

39.

Example

of

aborting

with

an

abort

code

abortTran("User

canceled

the

order.");

Figure

40.

Example

of

aborting

with

a

string

48

TXSeries™:

Encina

Object-Oriented

Programming

Guide

function

in

the

onException

or

onAnyException

clause

of

the

aborted

transaction

returns

the

abort

string

as

a

null-terminated

character

string.

Formatting

abort

reasons

If

you

use

abort

codes

to

specify

abort

reasons

for

transactions,

you

can

set

up

your

application

to

convert

abort

codes

to

strings

(such

as

NLS-compliant

strings)

for

printing.

Tran-C++

supplies

a

mechanism

and

defines

conventions

that

enable

you

to

do

this.

You

can

associate

abort

codes

with

a

function

you

define

to

translate

codes;

Tran-C++

invokes

this

function

(referred

to

as

a

formatting

function)

automatically

when

you

display

the

abort

reason

for

a

transaction

aborted

with

one

of

the

associated

abort

codes.

In

addition

to

defining

the

abort

codes,

you

must

take

the

following

steps

to

set

up

your

application

to

use

a

formatting

function:

1.

Define

an

abort

format

identifier

to

uniquely

identify

a

formatting

function.

2.

Define

a

formatting

function

that

formats

abort

codes

for

the

abort

reasons

associated

with

the

format

identifier.

3.

Register

the

format

identifier

and

its

associated

formatting

function

with

the

application.

First,

an

abort

format

identifier

must

be

defined

so

that

Tran-C++

can

associate

a

formatting

function

with

the

abort

reason

generated

by

an

aborted

transaction.

The

format

identifier

is

a

universal

unique

identifier

(UUID)

that

uniquely

identifies

the

formatting

function;

the

format

identifier

is

referred

to

as

the

format

UUID.

An

example

definition

of

two

abort

codes

and

a

format

UUID

is

shown

in

Figure

41.

(In

applications

developed

for

the

Distributed

Computing

Environment

(DCE),

the

value

for

the

format

UUID

can

be

created

with

the

DCE

uuidgen

utility.)

In

the

example,

constants

are

used

for

the

abort

codes,

but

enumerated

types

can

be

used

also.

Next,

a

formatting

function

must

be

defined

for

your

abort

reasons.

The

purpose

of

the

formatting

function

is

to

take

the

information

in

an

abort

reason

and

use

it

to

generate

output

appropriate

to

the

application.

The

formatting

function

is

invoked

automatically

and

passed

two

arguments:

a

pointer

to

an

abort

reason

data

structure

for

the

aborted

transaction

and

a

pointer

to

a

buffer.

By

default,

the

buffer

has

a

maximum

size

of

ENCINA_MAX_STATUS_STRING_SIZE

bytes.

(See

the

reference

page

for

the

type

for

the

abort

reason

data

structure,

encina_abortReason_t.)

Figure

42

on

page

50

shows

an

example

of

a

simple

formatting

function.

The

example

function

checks

the

abort

code

set

for

the

abort

reason

and,

based

on

the

value

of

the

abort

code,

returns

a

string

describing

the

reason

for

the

abort

in

the

bufferP

parameter.

This

example

generates

a

printable

string

that

is

not

NLS

compliant.

To

be

NLS

compliant,

a

routine

must

consult

a

language

catalog.

/*

Abort

Code

and

Format

*/

const

int

CANCELED_BY_USER

=

1;

const

int

ACCESS_DENIED

=

2;

const

char

ABORT_FORMAT[]

=

"0014ad20-e154-1d68-85b0-9e62092caa77";

Figure

41.

Defining

an

abort

code

and

format

UUID

Chapter

6.

Transaction

processing

with

Transactional-C++

49

Finally,

the

formatting

function

must

be

registered

with

the

application.

Only

one

formatting

function

can

be

registered

with

the

application

at

a

time.

The

registerAbortFormatter

macro

associates

the

formatting

function

with

the

format

UUID

and

registers

it

with

the

application.

This

macro

takes

two

arguments:

a

Uuid

object

and

the

name

of

a

function.

The

statement

shown

in

Figure

43

registers

the

AbortFormatter

function

and

associates

the

specified

format

UUID

with

it.

Once

the

function

is

registered,

your

application

can

call

the

abortTran

macro

to

abort

the

transaction,

using

an

abort

code

and

a

Uuid

object

for

the

format

UUID

associated

with

the

formatting

function.

The

statement

in

Figure

44

aborts

the

current

transaction

and

specifies

that

the

CANCELED_BY_USER

abort

code

is

formatted

by

using

the

AbortFormatter

function.

Calling

the

abortReason

macro

in

the

onAbort

clause

retrieves

the

abort

reason

string

returned

by

the

AbortFormatter

function.

Using

AbortReason

objects

Tran-C++

uses

the

AbortReason

class

to

manage

abort

reasons;

the

abort

reason

for

an

aborted

transaction

is

represented

as

an

instance

of

the

AbortReason

class.

You

can

build

on

the

functionality

of

the

AbortReason

class

to

control

the

way

abort

reasons

are

handled

in

your

application.

For

example,

you

can

derive

your

own

abort

reason

class

to

specialize

constructors.

An

AbortReason

object

can

be

used

to

specify

the

abort

reason

for

a

transaction

in

the

abortTran

macro.

Before

you

can

use

an

AbortReason

object

as

an

abort

reason,

you

must

create

an

instance

of

the

class.

The

class

constructors

require

an

argument

that

indicates

the

reason

for

the

abort.

Though

you

can

specify

the

reason

in

a

variety

of

ways,

it

is

typically

specified

as

an

abort

code

or

string.

The

static

void

AbortFormatter(encina_abortReason_t

*abortReasonP,

char

*bufferP)

{

char

*abortString;

switch(abortReasonP->code)

{

case

CANCELED_BY_USER:

abortString

=

"User

canceled

the

order.";

break;

case

ACCESS_DENIED:

abortString

=

"Access

denied!";

break;

default:

abortString

=

"Unknown

abort

code.";

}

strcpy(bufferP,

abortString);

}

Figure

42.

Example

function

for

formatting

an

abort

reason

registerAbortFormatter(Uuid(ABORT_FORMAT),

AbortFormatter);

Figure

43.

Example

of

registering

a

formatting

function

abort(CANCELED_BY_USER,

Uuid(ABORT_FORMAT));

Figure

44.

Example

of

aborting

with

a

formatted

abort

code

50

TXSeries™:

Encina

Object-Oriented

Programming

Guide

remainder

of

this

section

describes

one

approach

for

using

AbortReason

objects

in

conjunction

with

abort

codes.

See

“Using

abort

codes”

on

page

47

for

more

information

on

abort

codes.

When

abort

codes

are

used

to

indicate

the

reason

for

an

abort,

you

often

need

to

be

able

to

translate

the

codes

into

printable

strings

for

use

in

error

messages.

If

you

derive

your

own

abort

reason

class,

you

can

define

the

routine

that

translates

abort

codes

as

a

class

member

function

rather

than

a

function,

thus

limiting

the

scope

of

the

routine

to

the

class.

You

can

also

define

constructors

that

automatically

perform

steps

such

as

registering

the

formatting

function.

The

example

code

in

Figure

45

defines

abort

code

and

format

UUID

constants

and

a

class

derived

from

the

AbortReason

class.

(“Formatting

abort

reasons”

on

page

49

provides

general

information

on

defining

and

registering

formatting

functions

and

format

UUIDs

for

abort

reasons.)

The

LocalAbort

class

shown

in

Figure

45

defines

one

class

member

function

and

two

constructors.

The

member

function

returns

a

printable

string

based

on

the

abort

code

associated

with

the

abort

reason,

which

must

be

a

LocalAbort

object.

The

application

must

register

the

formatting

function

before

any

transactions

are

aborted.

The

LocalAbort

class

defines

a

constructor

that

registers

the

member

function

with

the

Tran-C++

runtime

and

assigns

a

format

UUID

to

uniquely

identify

the

function.

Using

this

constructor

to

create

an

instance

of

the

LocalAbort

class

automatically

registers

the

formatting

function.

The

declaration

shown

in

typedef

enum

{

CANCELED_BY_USER,

ACCESS_DENIED

}

local_abort_t;

const

char

ABORT_FORMAT[]

=

"0014ad20-e154-1d68-85b0-9e62092caa77";

class

LocalAbort

:

public

AbortReason

{

private:

static

void

LocalAbortFormatter(

encina_abortReason_t

*abortReasonP,

char

*bufferP)

{

char

*abortString;

AbortReason

reason(abortReasonP);

switch

(reason.GetCode())

{

case

CANCELED_BY_USER:

abortString

=

"User

canceled

order.";

break;

case

ACCESS_DENIED:

abortString

=

"Access

denied!";

break;

default:

abortString

=

"Unknown

abort

code.";

}

strcpy(bufferP,

abortString);

}

public:

LocalAbort()

{

registerAbortFormatter(Uuid(ABORT_FORMAT),

LocalAbortFormatter);

}

LocalAbort(long

abortCode)

:

AbortReason(abortCode,

Uuid(ABORT_FORMAT))

{}

};

Figure

45.

Example

class

definition

for

specializing

abort

reasons

Chapter

6.

Transaction

processing

with

Transactional-C++

51

Figure

46

creates

an

instance

of

the

LocalAbort

class

named

aborter,

which

invokes

the

constructor

that

registers

the

LocalAbort::LocalAbortFormatter

function.

Once

the

formatting

function

is

registered,

you

can

abort

transactions

by

using

an

instance

of

the

LocalAbort

class

as

the

abort

reason.

The

other

constructor

defined

for

the

LocalAbort

class

creates

an

abort

reason

by

using

an

abort

code

and

automatically

sets

the

formatting

function

for

the

abort

code.

The

statement

shown

in

Figure

47

aborts

the

current

transaction

and

specifies

the

reason

for

the

abort

as

an

instance

of

the

LocalAbort

class.

This

creates

an

abort

reason

that

returns

“User

canceled

order.”

as

the

abort

reason

string

when

the

abortReason

macro

is

called

in

the

onAnyException

clause

for

the

transaction.

Using

exceptions

You

can

abort

a

transaction

by

throwing

an

exception.

Any

exception

that

is

not

caught

within

the

scope

of

the

transaction

aborts

the

transaction.

For

example,

the

statement

in

Figure

48

aborts

the

current

transaction

by

throwing

a

user-defined

exception

named

insufficient_funds.

The

thrown

exception

is

caught

in

the

onAnyException

or

onException

clause

of

the

transaction

construct.

See

“Handling

errors”

on

page

15

for

more

information

on

using

exceptions.

Getting

information

about

aborted

transactions

When

a

transaction

aborts,

there

are

several

Tran-C++

macros

that

can

be

called

to

retrieve

information

about

the

reason

for

the

abort.

These

macros

can

be

called

only

from

within

the

onException

or

onAnyException

clause

of

a

transaction,

and

the

information

they

return

is

valid

only

within

the

onAbort

clause

from

which

they

are

called.

Tran-C++

provides

two

macros

that

can

be

called

to

retrieve

some

indication

of

why

the

transaction

aborted:

the

abortReason

macro

and

the

abortCode

macro.

Figure

49

on

page

53

shows

a

simple

example

using

these

macros.

LocalAbort

aborter;

Figure

46.

Example

of

instantiating

a

specialized

abort

reason

abortTran(LocalAbort(CANCELED_BY_USER));

Figure

47.

Example

of

aborting

with

a

specialized

abort

reason

throw

insufficient_funds();

Figure

48.

Example

of

aborting

with

an

exception

52

TXSeries™:

Encina

Object-Oriented

Programming

Guide

The

abortReason

macro

returns

a

string

that

describes

the

reason

why

the

current

transaction

aborted.

If

the

transaction

is

aborted

with

a

string

used

to

specify

the

abort

reason,

the

abortReason

macro

returns

the

string.

If

the

transaction

is

aborted

with

an

abort

code

used

to

specify

the

abort

reason

and

a

formatting

function

is

registered

for

the

code,

the

macro

returns

the

string

returned

by

the

formatting

function.

Note

that

if

the

reason

is

defined

as

an

abort

code

but

no

formatting

function

is

registered

for

the

code’s

format,

the

abortReason

macro

returns

a

string

generated

by

Tran-C++.

See

“Using

abort

codes”

on

page

47

for

more

information

on

abort

codes

and

formatting

functions.

The

abortCode

macro

returns

an

integer

code

that

identifies

the

reason

why

the

transaction

aborted.

You

can

use

the

abortFormat

macro

to

ensure

that

the

code

returned

by

the

abortCode

macro

is

unique.

The

abortFormat

macro

returns

a

Uuid

object

that

represents

the

format

UUID

for

the

abort

reason.

The

format

UUID

is

the

identifier

of

the

formatting

function

registered

for

the

transaction.

(See

“Using

abort

codes”

on

page

47

for

more

information.)

If

your

application

performs

actions

based

on

the

value

of

the

abort

code

in

an

onException

or

onAnyException

clause,

first

check

the

format

UUID

to

ensure

that

the

value

corresponds

to

an

abort

code

associated

with

the

abort

reason.

For

example,

your

application

can

define

two

different

sets

of

abort

codes

that

have

the

same

integer

values;

the

abort

codes

in

one

set,

however,

are

associated

with

a

different

format

UUID

than

the

abort

codes

in

the

other

set.

Your

application

must

check

the

value

returned

by

the

abortCode

macro

and

the

value

returned

by

the

abortFormat

macro

to

uniquely

identify

the

abort

reason.

The

getReason

macro

returns

the

AbortReason

object

associated

with

an

aborted

transaction.

You

can

use

the

AbortReason

class

member

functions

and

operators

to

compare

the

AbortReason

object

against

other

abort

reasons,

get

its

abort

code

and

format

UUID,

and

so

on.

See

the

reference

page

for

the

AbortReason

class

for

more

information.

transaction{

account1.debit(amount);

}

onCommit{

cout

<<

"The

transaction

committed."

<<

endl;

}

onAnyException{

//

operations

that

are

executed

only

after

the

transaction

aborts

cout

<<

"The

transaction

aborted."

<<

endl;

cout

<<

"

The

reason

is:

"

<<

abortReason()

<<

endl;

cout

<<

"

The

code

is:

"

<<

abortCode()

<<

endl;

}

Figure

49.

Getting

abort

reason

information

Chapter

6.

Transaction

processing

with

Transactional-C++

53

54

TXSeries™:

Encina

Object-Oriented

Programming

Guide

Chapter

7.

Transaction

processing

with

OMG

OTS

for

Encina++

Encina++

provides

an

implementation

of

the

Object

Management

Group’s

(OMG)

Object

Transaction

Service

(OTS)

interface.

The

implementation

supports

the

use

of

transactions

in

the

Distributed

Computing

Environment

(DCE).

This

chapter

provides

details

about

using

the

OTS

interface

in

the

DCE

environment.

OTS

provides

the

following

models

of

transaction

processing:

implicit

and

explicit.

v

Under

the

implicit

model

of

transaction

processing,

the

transaction

is

managed

and

propagated

automatically,

for

the

most

part,

by

each

transaction

participant.

This

model

is

discussed

in

“Using

the

implicit

model

of

transaction

processing.”

v

Under

the

explicit

model

of

transaction

processing,

the

transaction

is

managed

and

propagated

manually

by

each

transaction

participant.

This

model

is

discussed

in

“Using

the

explicit

model

of

transaction

processing”

on

page

59.

Using

OTS

in

DCE

This

section

describes

the

DCE

implementation

of

the

OTS

interface,

which:

v

Supports

a

subset

of

the

OMG

OTS

specification;

interfaces

for

defining

recoverable

resources

are

not

included.

v

Uses

TIDL

to

define

interface

operations

as

transactional.

v

Does

not

support

the

explicit

creation

or

propagation

of

transactions,

but

does

support

the

explicit

management

of

implicitly

created

transactions.

v

Uses

Encina++

exceptions

to

report

errors.

Examples

and

descriptions

of

OTS

functionality

that

are

used

throughout

this

chapter

are

based

on

the

DCE

implementation.

Using

the

implicit

model

of

transaction

processing

The

OTS

interface

defines

the

Current

class

to

support

the

implicit

model

of

transaction

processing.

The

Current

class

defines

class

member

functions

to

begin

and

end

transactions,

query

the

status

of

the

current

transaction,

and

set

a

timeout

for

a

transaction.

All

member

functions

of

the

Current

class

are

declared

as

static

class

functions;

an

instance

of

the

class

is

not

required

to

invoke

a

function.

In

the

implicit

model,

each

thread

being

executed

on

behalf

of

a

transaction

has

an

associated

transaction

context.

The

transaction

context

specifies

the

transaction

on

behalf

of

which

the

thread

is

being

executed.

A

thread

can

be

executed

on

behalf

of

only

one

transaction

at

a

time.

Several

threads

can

work

on

the

same

transaction;

use

the

TranPthread

class

to

create

these

threads.

For

a

function

to

propagate

implicitly

a

transaction,

that

function

must

be

marked

as

transactional

within

the

Transactional

Interface

Definition

Language

(TIDL)

file

for

an

Encina++/DCE

application.

©

Copyright

IBM

Corp.

1999,

2004

55

|
|
|
|

|

|

|
|

|

|
|

|

|
|
|

Beginning

and

ending

transactions

You

can

begin

a

transaction

with

the

Current::begin

function.

Calling

this

function

automatically

associates

the

transaction

context

for

the

created

transaction

with

the

thread

in

which

the

function

is

executed.

The

transaction

ends

when

one

of

the

following

occurs:

v

The

Current::commit

function

is

invoked

to

commit

the

current

transaction.

v

The

Current::rollback

function

is

invoked

to

abort

the

current

transaction.

The

example

in

Figure

50

shows

a

typical

use

of

the

Current

class

member

functions

used

to

begin

and

end

a

transaction

in

an

Encina++/DCE

client.

In

Figure

50,

the

debit

and

credit

functions

are

executed

within

the

scope

of

the

transaction.

If

the

debit

and

credit

functions

are

executed

without

aborting

the

transaction,

the

call

to

Current::commit

ends

the

transaction

and

commit

processing

begins.

The

transaction

is

committed

only

if

all

of

the

participants

in

the

transaction

agree

to

commit;

otherwise,

the

Encina++

runtime

system

throws

an

exception

indicating

that

the

transaction

is

rolled

back

(the

TransactionRolledBack

exception

in

Encina++/DCE).

However,

if

the

call

to

either

the

debit

or

credit

function

throws

an

exception

(either

explicitly

or

as

a

result

of

a

communications

failure,

for

example),

the

exception

is

caught

at

the

client.

In

this

case,

the

default

catch

statement

catches

the

exception

and

calls

the

Current::rollback

function

to

end

the

transaction.

Nesting

transactions

OTS

supports

the

use

of

subtransactions.

A

subtransaction

is

a

nested

transaction

that

is

executed

within

the

scope

of

its

parent

transaction

and

commits

with

respect

to

its

parent.

That

is,

if

the

subtransaction

commits

but

the

parent

transaction

aborts,

the

effects

of

the

subtransaction

are

rolled

back.

The

parent

transaction,

however,

does

not

rely

on

the

outcome

of

its

subtransactions

and

can

still

commit

even

if

the

subtransactions

abort.

Figure

51

on

page

57

shows

an

example

that

creates

a

subtransaction.

int

SUCCESS

=

TRUE;

try

{

Current::begin();

account1.debit(amount);

account2.credit(amount);

Current::commit();

}

catch(TransactionRolledBack)

{

cout

<<

"A

TransactionRolledBack

exception

was

caught."

<<

endl;

SUCCESS

=

FALSE;

}

catch(...)

{

Current::rollback();

cout

<<

"An

exception

was

caught."

<<

endl;

SUCCESS

=

FALSE;

}

if

(SUCCESS)

cout

<<

"Transaction

committed.

"

<<

endl;

else

cout

<<

"Transaction

aborted.

"

<<

endl;

Figure

50.

Beginning

and

ending

an

OTS

transaction

in

Encina++/DCE

56

TXSeries™:

Encina

Object-Oriented

Programming

Guide

In

Figure

51,

the

debit

function

is

executed

within

the

scope

of

a

subtransaction,

and

the

QueryBalance

function

is

executed

within

the

scope

of

the

parent

transaction.

Even

if

the

debit

function

is

aborted

(for

example,

due

to

insufficient

funds),

the

QueryBalance

function

can

still

be

executed

without

aborting

the

transaction,

returning

the

correct

account

balance.

Aborting

transactions

Transactions

can

be

aborted

by

the

runtime

system

or

by

any

participant

in

a

distributed

transaction.

Communications

or

data

access

failures

are

the

most

common

cause

of

runtime-system

aborts.

Your

application

can

abort

transactions

explicitly

by

calling

the

Current::rollback

function.

Typically,

you

define

a

remote

procedure

to

throw

an

exception

to

transfer

control

out

of

the

try

block

in

which

the

transaction

is

begun,

and

the

transaction

is

ended

by

a

call

to

the

Current::rollback

function

in

the

catch

block.

Figure

52

shows

an

example

that

explicitly

aborts

the

transaction

by

throwing

an

exception.

The

debit

function

aborts

the

transaction

if

the

amount

to

be

debited

is

greater

than

the

account

balance.

The

insufficient_funds

exception

is

caught

by

the

default

catch

statement

(shown

in

Figure

50

on

page

56),

which

calls

the

Current::rollback

function

to

end

the

transaction.

Note:

Make

sure

that

your

application

ends

each

transaction

once

and

only

once

by

either

committing

or

rolling

back

the

transaction.

This

is

particularly

try

{

Current::begin();

try

{

Current::begin();

account1.debit(amount);

Current::commit();

}

catch(...)

{

Current::rollback();

cout

<<

"An

exception

was

caught."

<<

endl;

cout

<<

"The

subtransaction

aborted."

<<

endl;

}

account1.QueryBalance();

Current::commit();

}

catch(...)

{

Current::rollback();

cout

<<

"An

exception

was

caught."

<<

endl;

cout

<<

"The

transaction

aborted."

<<

endl;

}

Figure

51.

Creating

a

nested

OTS

transaction

void

Account::debit(int

amount)

{

if

((balance

-

amount)

<

0)

{

cout

<<

"Insufficient

funds."

<<

endl;

throw

insufficient_funds{};

}

else

{

balance

=

balance

-

amount;

cout

<<

"New

balance:

"

<<

balance

<<

endl;

}

}

Figure

52.

Aborting

an

OTS

transaction

Chapter

7.

Transaction

processing

with

OMG

OTS

for

Encina++

57

important

if

your

application

uses

nested

transactions.

For

example,

if

a

manager

function

aborts

a

nested

transaction

instead

of

raising

an

exception,

the

current

thread

is

disassociated

from

the

nested

transaction

and

associated

with

the

parent

transaction.

In

addition,

execution

of

the

statements

in

the

try

block

enclosing

the

nested

transaction

continues

until

an

exception

is

thrown.

If

no

exception

is

thrown

before

the

Current::commit

function

at

the

end

of

the

try

block

is

invoked,

the

function

attempts

to

commit

the

parent

transaction.

To

ensure

that

your

application

behaves

as

expected,

you

must

manage

the

transaction

context

of

the

current

thread

carefully.

(Refer

to

“Nesting

transactions”

on

page

56

for

more

information

on

nested

transactions.)

Suspending

and

resuming

transactions

You

can

suspend

a

transaction

by

invoking

the

Current::suspend

function

in

the

context

of

the

current

transaction.

The

function

returns

a

pointer

of

type

Control_ptr,

which

is

a

pointer

to

a

Control

class

instance.

The

Control

instance

represents

the

transaction

context

associated

with

the

current

thread.

See

“Using

the

explicit

model

of

transaction

processing”

on

page

59

for

more

information

on

the

Control

class.

Note

that

the

resources

that

a

transaction

is

accessing

remain

locked

while

the

transaction

is

suspended.

To

resume

the

suspended

transaction,

call

the

Current::resume

function,

passing

it

the

pointer

returned

when

the

transaction

was

suspended.

Figure

53

shows

an

example

of

suspending

and

resuming

a

transaction.

Checking

transaction

status

In

a

server,

you

can

determine

the

status

of

the

current

transaction

by

invoking

the

Current::get_status

function.

The

function

returns

a

value

of

type

Status,

which

is

an

enumerated

type.

You

can

use

the

Status

value

to

determine

whether

the

current

transaction

is

active,

prepared,

committed,

marked

for

rollback,

or

already

rolled

back.

The

Status

value

can

also

indicate

that

the

status

is

unknown

or

that

there

is

no

transaction.

Refer

to

the

reference

page

for

the

Status

type

for

more

information.

Control_ptr

controlP;

try

{

Current::begin();

account1.debit(amount);

controlP

=

Current::suspend();

//

do

some

nontransactional

work

...

Current::resume(controlP);

Current::commit();

}

catch(...)

{

Current::rollback();

cout

<<

"An

exception

was

caught."

<<

endl;

}

Figure

53.

Suspending

and

resuming

an

OTS

transaction

58

TXSeries™:

Encina

Object-Oriented

Programming

Guide

Using

the

explicit

model

of

transaction

processing

Under

some

circumstances,

it

is

necessary

to

explicitly

manage

and

propagate

transactions.

Explicit

management

(also

known

as

direct

management)

and

propagation

of

transactions

can

be

difficult

to

program

and

is

significantly

less

efficient

than

implicit

management

and

propagation.

Therefore,

it

is

recommended

that

you

use

explicit

transaction

processing

only

when

necessary.

Note:

You

cannot

create

or

propagate

transactions

explicitly

in

Encina++/DCE

applications

using

OTS;

however,

Encina++/DCE

applications

can

explicitly

manage

transactions

when

they

have

been

implicitly

created.

The

OTS

interface

defines

several

classes

to

encapsulate

and

manipulate

transactions

under

the

explicit

model:

v

The

Control

class

contains

member

functions

to

get

object

references

for

the

other

two

classes.

v

The

Coordinator

class

contains

member

functions

for

registering

resources

and

gathering

information

on

transactions.

v

The

Terminator

class

contains

member

functions

for

committing

or

rolling

back

a

transaction.

The

Control,

Coordinator,

and

Terminator

classes

can

be

used

to

propagate

a

transaction

between

the

participants.

Using

the

Encina++/DCE

framework,

it

is

possible

to

commit

or

rollback

a

transaction.

Only

the

transaction

initiator

can

commit

a

transaction;

any

transaction

participant

can

rollback

a

transaction.

See

“Committing

or

rolling

back

a

transaction.”

OTS

also

provides

other

functions

for

managing

transactions

explicitly.

See

“Other

functions

for

explicitly

managing

transactions”

on

page

60

for

a

description

of

some

of

these

functions.

Committing

or

rolling

back

a

transaction

Only

the

transaction

initiator

can

commit

a

transaction.

Any

transaction

participant

can

roll

back

a

transaction.

To

commit

or

roll

back

a

transaction,

the

transaction

initiator

must

obtain

a

reference

to

a

Terminator

object.

This

can

be

done

by

calling

the

Control::get_terminator

function.

The

transaction

initiator

calls

the

Terminator::commit

function

to

commit

the

transaction,

or

the

Terminator::rollback

function

to

roll

back

the

transaction

The

Terminator::commit

function

has

one

parameter,

report_heuristics,

that

specifies

whether

heuristic

decisions

are

reported

for

the

commit.

This

parameter

can

be

set

to

either

TRUE

or

FALSE.

For

more

information

on

heuristics,

see

Encina

Toolkit

Programming

Guide.

Figure

54

on

page

60

shows

an

example

of

the

code

that

is

required

to

commit

and

roll

back

a

transaction.

Chapter

7.

Transaction

processing

with

OMG

OTS

for

Encina++

59

|

|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|
|
|
|

|
|
|

|

|
|

|
|
|
|
|

|
|
|
|

|
|
|

Any

transaction

participant

can

roll

back

a

transaction

by

calling

the

Coordinator::rollback_only

function.

The

transaction

is

actually

rolled

back

when

the

transaction

initiator

calls

the

Terminator::commit

function

or

the

Terminator::rollback

function.

To

roll

back

a

transaction,

a

transaction

participant

must

obtain

a

reference

to

a

Coordinator

object.

This

can

be

done

by

calling

the

Control::get_coordinator

function.

The

transaction

participant

can

then

call

the

Coordinator::rollback_only

function.

Figure

55

shows

an

example

of

the

code

that

is

required

to

roll

back

a

transaction.

Other

functions

for

explicitly

managing

transactions

The

Control

and

Coordinator

classes

contain

a

variety

of

additional

functions

and

operators

for

explicitly

managing

transactions,

including

the

following:

v

The

Cooordinator::create_subtransaction

function

creates

a

subtransaction.

v

The

Cooordinator::get_parent_status,

Cooordinator::get_status,

and

Cooordinator::get_top_level_status

functions

return

transaction

status

information.

//

we

have

a

transaction

Control_ptr

txn;

//

we

try

{

Current::begin();

Account1.debit(amount);

Account2.credit(amount);

txn

=

Current::get_control();

//Call

get_terminator

to

get

a

reference

to

the

transaction’s

Terminator

object

Terminator_var

txnTerm

=

txn->get_terminator();

...

//Perform

transactional

work

...

//If

transactional

work

is

successfully

completed,

begin

commit

processing

txnTerm->commit(FALSE);

...

//If

transactional

work

is

not

successfully

completed,

roll

back

txnTerm->rollback();

...

}

//

End

Try

block

Figure

54.

Committing

and

rolling

back

a

transaction

in

Encina++/DCE

//Obtain

a

transaction

context

...

//Call

get_coordinator

to

get

a

reference

to

the

transaction’s

Coordinator

object

Terminator_var

txnCoord

=

txn->get_coordinator();

...

//Perform

transactional

work

...

//If

transactional

work

is

not

successfully

completed,

mark

the

transaction

for

rollback

txnCoord->rollback_only();

...

Figure

55.

Rolling

back

a

transaction

in

Encina++/DCE

60

TXSeries™:

Encina

Object-Oriented

Programming

Guide

|
|
|
|

|
|
|
|

|
||

|

|
|

|

|
|
|

For

information

on

these

and

other

Control

and

Coordinator

member

functions,

see

the

reference

pages

for

these

classes

and

functions.

Interactions

between

Tran-C++

and

OTS

interfaces

This

section

documents

general

guidelines

and

limitations

regarding

the

use

of

Tran-C++

and

the

Encina

OTS

interfaces

in

the

same

application.

Though

both

interfaces

are

built

on

top

of

the

same

lower-level

Encina

components

and

provide

similar

functionality,

the

implementations

differ

in

significant

ways.

In

general,

using

both

interfaces

in

the

same

application

is

not

recommended.

However,

there

are

possible

cases

in

which

you

need

to

use

one

interface

for

a

client

application

and

the

other

for

a

server

application.

If

you

do

this,

you

must

be

aware

of

the

limitations

imposed

by

the

differences

between

the

two

interfaces.

The

main

differences

concern

the

use

of

abort

reasons

and

transaction

identity.

The

OTS

interface

does

not

support

the

use

of

Tran-C++

abort

reasons.

For

example,

if

a

server

manager

function

uses

the

Tran-C++

abortTran

macro

to

abort

a

transaction

created

at

the

client

with

the

OTS

Current

class,

the

abort

reason

specified

as

an

argument

to

the

abortTran

macro

has

no

meaning

to

the

OTS

transaction

at

the

client.

The

OTS

interface

does

not

provide

a

way

to

retrieve

the

abort

reason,

abort

code,

or

format

identifier

used

when

a

Tran-C++

transaction

is

aborted.

Likewise,

if

a

server

manager

function

calls

the

Current::rollback

function

to

abort

a

transaction

created

at

the

client

with

a

Tran-C++

transaction

construct,

an

abort

reason

cannot

be

specified

in

the

call

that

aborts

the

transaction.

If

an

abort

reason

is

not

specified,

Tran-C++

creates

a

generic

abort

reason

that

contains

default

values

for

the

abort

code,

format

UUID,

and

so

on.

You

can,

however,

use

the

functionality

defined

in

the

Encina

Abort

Facility

to

set

and

retrieve

abort

reasons

in

an

OTS

transaction.

The

Encina

Abort

Facility

is

documented

in

the

Encina

Toolkit

Programming

Guide.

Another

difference

between

the

Tran-C++

and

OTS

interfaces

is

the

way

they

represent

transaction

identity.

Tran-C++

uses

Tran

objects,

and

the

OTS

interface

uses

Control

objects

as

transaction

identifiers.

You

cannot

cast

a

Tran

object

to

a

Control

object,

nor

can

you

cast

a

Control

object

to

a

Tran

object.

You

can,

however,

cast

both

Tran

and

Control

objects

to

the

Encina

tran_tid_t

type

for

the

purpose

of

comparing

transaction

identifiers.

Chapter

7.

Transaction

processing

with

OMG

OTS

for

Encina++

61

|
|

62

TXSeries™:

Encina

Object-Oriented

Programming

Guide

Chapter

8.

Using

threads

Threads

provide

a

way

of

improving

the

performance

of

an

application

by

making

it

possible

to

execute

multiple

operations

in

parallel.

Encina++

servers

can

create

threads

automatically,

depending

on

which

concurrency

mode

is

set

when

the

server

starts

listening

(see

“Listening

for

RPCs”

on

page

14).

The

Encina++

thread

classes

encapsulate

Portable

Operating

System

Interface

(POSIX)

threads,

enabling

you

to

create

threads

explicitly;

you

can

create

threads

that

are

executed

either

outside

the

context

of

a

transaction

(nontransactional

threads)

or

within

the

context

of

a

transaction

(transactional

threads).

The

following

sections

describe

how

these

two

different

types

of

threads

can

be

used

in

Encina++

applications.

Using

nontransactional

threads

Encina++

defines

the

Pthread

class

for

creating

and

controlling

threads.

A

thread

created

by

using

the

Pthread

class

is

referred

to

as

a

nontransactional

thread

because

the

function

executed

by

the

thread

does

no

work

on

behalf

of

a

transaction,

even

if

the

thread

is

created

within

the

scope

of

a

transaction.

The

example

code

in

Figure

56

illustrates

the

use

of

the

Pthread

class.

The

first

for

loop

calls

the

Pthread::Create

function

to

execute

the

same

function

in

five

new

threads.

The

second

for

loop

calls

the

Pthread::Join

function

to

join

the

five

threads

to

the

main

thread.

Each

new

thread

executes

a

function

specified

as

the

first

argument

to

the

Pthread::Create

function.

The

function

executed

by

the

threads

created

in

Figure

56

is

named

threadWork.

Figure

57

on

page

64

shows

a

sample

definition

for

the

threadWork

function.

//

instantiate

5

threads

Pthread

threads[5];

int

i;

//

create

5

threads

that

execute

the

threadWork

function

and

then

//

join

the

threads

for

(i=0;i<5;i++)

threads[i].Create(threadWork,

(void

*)i);

for

(i=0;i<5;i++)

threads[i].Join();

Figure

56.

Creating

and

joining

nontransactional

threads

©

Copyright

IBM

Corp.

1999,

2004

63

The

function

executed

by

the

thread

can

use

the

ThisPthread

class

to

control

the

thread

from

within

the

thread

itself.

For

example,

the

threadWork

function

in

Figure

57

calls

ThisPthread::Exit

to

terminate

the

execution

of

odd-numbered

threads

before

the

remaining

statements

are

executed.

You

can

also

call

the

ThisPthread::Delay

function

to

suspend

the

execution

of

the

thread

for

a

specified

period

of

time

or

the

ThisPthread::Yield

function

to

yield

the

processor

to

another

thread.

Using

transactional

threads

Encina++

defines

the

TranPthread

class,

which

is

derived

from

the

Pthread

class,

for

creating

and

controlling

threads

that

are

executed

transactionally.

When

a

transactional

thread

is

created

within

the

scope

of

a

transaction,

the

thread

inherits

the

transaction’s

environment;

the

operation

being

executed

by

the

thread

is

executed

on

behalf

of

the

transaction.

When

a

transactional

thread

is

created

outside

the

scope

of

a

transaction,

the

thread

behaves

like

a

nontransactional

thread

(unless

you

specify

explicitly

that

the

thread

create

a

new

transaction).

Using

the

TranPthread

class,

you

can

create

either

of

the

following:

v

Concurrent

transactional

threads

v

Concurrent

transactions

If

concurrent

transactional

threads

are

created,

each

thread

is

executed

on

behalf

of

the

same

transaction

(see

“Creating

concurrent

transactional

threads”).

If

concurrent

transactions

are

created,

each

transaction

is

executed

on

its

own

thread

(see

“Creating

concurrent

transactions”

on

page

65).

Because

the

TranPthread

class

is

defined

as

part

of

the

Encina

C++

interface,

you

can

create

transactional

threads

in

applications

that

use

Tran-C++,

the

OMG

OTS

interface,

or

neither.

For

applications

that

use

the

OMG

OTS

interface,

only

those

applications

that

conform

to

the

implicit

model

of

transaction

demarcation

(using

the

Current

class)

can

use

the

TranPthread

class

to

create

transactional

threads.

Applications

that

use

the

explicit

model

can

use

the

Pthread

class,

passing

the

explicit

(Control)

object

as

an

argument

to

the

newly

created

thread

to

achieve

the

same

effect.

See

Chapter

5,

“Transaction

processing

overview,”

on

page

39

for

more

information

on

the

two

transaction-demarcation

models

for

the

OMG

OTS

interface.

Creating

concurrent

transactional

threads

Transactional

threads

are

typically

used

to

create

concurrent

threads

that

do

transactional

work.

Figure

58

on

page

65

shows

a

Tran-C++

example

that

uses

the

void*

threadWork(void

*argP)

{

int

arg

=

(int)argP;

void

*result

=

(void

*)

-1;

cout

<<

"

Executing

thread

#"

<<

(int)argP

<<

endl;

if

(arg

%

2)

ThisPthread::Exit(result);

else

//

do

work

here...

cout

<<

"\t

Thread

#"

<<

arg

<<

"

completed."

<<

endl;

return(result);

}

Figure

57.

Sample

function

executed

on

a

nontransactional

thread

64

TXSeries™:

Encina

Object-Oriented

Programming

Guide

TranPthread::Create

function

to

create

five

threads;

the

threads

execute

the

function

named

tranThreadWork

concurrently.

Because

the

transactional

threads

are

created

within

the

scope

of

the

transaction

construct,

the

tranThreadWork

function

is

executed

as

part

of

the

transaction.

Figure

59

shows

a

simple

example

function

that

displays

the

transaction

identifier

and

causes

the

odd-numbered

threads

(in

this

case,

threads

1

and

3)

to

exit.

As

with

nontransactional

threads,

you

can

use

the

ThisPthread

class

to

control

a

thread

from

within

the

thread

itself.

The

call

to

the

ThisPthread::Exit

function

causes

the

tranThreadWork

function

to

exit

before

the

remaining

statements

are

executed.

Creating

concurrent

transactions

You

can

also

use

transactional

threads

to

create

concurrent

transactions

or

concurrent

subtransactions.

The

TranPthread::Create

function

allows

you

to

specify

that

the

function

executed

on

the

thread

be

executed

within

the

scope

of

a

new

transaction

by

passing

TRUE

as

the

third

argument.

If

TRUE

is

not

passed

as

the

third

argument,

either

concurrent

transactional

threads

or

concurrent

nontransactional

threads

are

created,

depending

on

whether

the

TranPthread::Create

function

is

called

within

the

scope

of

a

transaction.

For

example,

you

can

create

concurrent,

top-level

transactions

by

passing

TRUE

as

the

third

argument

to

the

TranPthread::Create

function

as

shown

in

Figure

60

on

page

66.

Each

transaction

completes

when

the

thread

on

which

it

is

executed

completes.

TranPthread

threads[5];

//

creating

threads

within

the

scope

of

a

transaction

transaction

{

for

(i=0;i<5;i++)

threads[i].Create(tranThreadWork,

(void

*)i);

for

(i=0;i<5;i++)

threads[i].Join();

}

onAnyException

{

cout

<<

"

Transaction

"

<<

getCompletedTran()

<<

"

aborted:

"

<<

abortReason()

<<

endl;

}

Figure

58.

Creating

concurrent

transactional

threads

void*

tranThreadWork(void

*argP)

{

int

arg

=

(int)argP;

void

*result

=

(void

*)

-1;

cout

<<

"\t

Transaction

ID:

"

<<

getTran()

<<

endl;

if

(arg

%

2)

ThisPthread::Exit(result);

cout

<<

"\t

Thread

#"

<<

arg

<<

"

completed."

<<

endl;

return(result);

}

Figure

59.

Sample

function

executed

on

a

transactional

thread

Chapter

8.

Using

threads

65

Note

the

use

of

the

TranPthread::GetReason

function

in

the

second

for

loop.

You

can

use

this

function

to

get

the

abort

reason

for

transactions

that

you

do

not

create

explicitly

(for

example,

by

using

the

Tran-C++

transaction

construct).

Figure

61

shows

a

simple

example

function

that

displays

the

transaction

identifier

and

aborts

the

transactions

created

on

odd-numbered

threads

(in

this

case,

threads

1

and

3).

There

are

a

variety

of

ways

to

create

concurrent

subtransactions

in

Encina++

applications.

One

way

that

you

can

create

concurrent

subtransactions

is

by

calling

the

TranPthread::Create

function

(with

the

TRUE

argument)

within

the

scope

of

a

transaction

construct

as

shown

in

Figure

62.

You

can

also

create

subtransactions

by

explicitly

creating

transactions

rather

than

by

passing

TRUE

to

the

TranPthread::Create

function.

For

example,

you

can

use

the

Tran-C++

transaction

construct

in

the

function

executed

by

the

transactional

TranPthread

threads[5];

AbortReason

*reason;

for

(i=0;i<5;i++)

threads[i].Create(tranThreadWork,

(void

*)i,

TRUE);

for

(i=0;i<5;i++)

{

threads[i].Join();

if

(reason

=

threads[i].GetReason())

cout

<<

"

Transaction

aborted

in

thread

#"

<<

i

<<

":

"

<<

*reason

<<

endl;

}

Figure

60.

Creating

concurrent

transactions

void*

tranThreadWork(void

*argP)

{

int

arg

=

(int)argP;

void

*result

=

(void

*)

-1;

cout

<<

"\t

Transaction

ID:

"

<<

getTran()

<<

endl;

if

(arg

%

2)

abortTran("***

Odd-numbered

thread

***");

cout

<<

"\t

Thread

#

"

<<

arg

<<

"

completed."

<<

endl;

return(result);

}

Figure

61.

Sample

function

executed

on

a

concurrent

transactional

thread

transaction

{

for

(i=0;i<5;i++)

threads[i].Create(tranThreadWork,

(void

*)i,

TRUE);

for

(i=0;i<5;i++)

{

threads[i].Join();

if

(reason

=

threads[i].GetReason())

cout

<<

"

Subtransaction

of

transaction

"

<<

getTran()

<<

"

aborted

in

thread

#"

<<

i

<<

":

"

<<

*reason

<<

endl;

}

}

onAnyException

{

cout

<<

"

Transaction

"

<<

getCompletedTran()

<<

"

aborted:

"

<<

abortReason()

<<

endl;

}

Figure

62.

Creating

concurrent

subtransactions

66

TXSeries™:

Encina

Object-Oriented

Programming

Guide

thread.

Refer

to

Chapter

5,

“Transaction

processing

overview,”

on

page

39

for

more

information

on

using

the

Tran-C++

or

OMG

OTS

interfaces.

Chapter

8.

Using

threads

67

68

TXSeries™:

Encina

Object-Oriented

Programming

Guide

Chapter

9.

Diagnostics

This

chapter

describes

the

diagnostic

support

provided

for

Encina++.

Encina++

uses

the

standard

tracing

mechanism

used

by

all

Encina

components

to

generate

output

to

aid

in

diagnosing

problems.

The

following

sections

describe

the

programmatic

controls

for

diagnostic

output

and

provide

lists

of

the

error

and

warning

messages

defined

for

the

Encina++

interfaces.

Tracing

applications

The

Encina

Trace

Facility

enables

you

to

follow

the

execution

path

of

Encina

applications,

tracing

various

events

such

as

the

entry

and

exit

of

functions.

It

also

enables

you

to

specify

the

destination

for

trace

output.

This

section

documents

trace

information

specific

to

Encina++.

See

the

documentation

for

the

Encina

Trace

Facility

in

the

Encina

Toolkit

Programming

Guide

for

detailed

information

about

tracing

Encina

applications.

Tracing

can

be

controlled

through

Encina’s

administrative

facilities.

Some

administrative

facilities

require

that

you

specify

a

name

for

the

component

to

be

traced.

The

component

name

defined

for

Encina++

is

ots

(object

transaction

service).

Tracing

can

be

controlled

programmatically

as

well.

To

enable

or

disable

tracing,

you

can

assign

a

value

for

the

Encina++

trace

mask

in

your

application.

This

also

sets

the

trace

level

for

the

Encina++

component.

The

trace

mask

for

Encina++

is

an

exported

global

variable

named

ots_traceMask.

The

ots_traceMask

variable

is

interpreted

as

a

bit

mask.

It

is

defined

as

follows:

unsigned

long

ots_traceMask;

The

Encina

Trace

Facility

defines

bit

constants

that

can

be

used

in

specifying

the

value

of

a

trace

mask.

Encina++

supports

the

following

bit

constants

for

the

ots_traceMask

variable:

v

TRACE_ENTRY

enables

tracing

of

the

entry

and

exit

of

Encina++

functions.

v

TRACE_EVENT

enables

tracing

of

significant

events

in

Encina++.

v

TRACE_PARAM

enables

tracing

of

the

parameters

passed

to

Encina++

functions.

v

TRACE_GLOBAL

enables

all

tracing.

v

TRACE_NONE

disables

all

tracing.

The

value

specified

for

the

trace

mask

variable

takes

effect

immediately.

By

default,

trace

output

is

sent

to

an

internal

buffer

unless

you

redirect

the

output

to

another

destination.

Dumping

the

application

state

The

Encina

C++

interface

defines

a

state

dump

function

named

ots_DumpState,

which

generates

output

describing

the

internal

state

of

an

Encina++

application

at

the

time

the

function

is

called.

You

can

write

your

application

to

call

the

function

directly

or

use

debugger

commands

to

call

the

function

if

you

are

running

the

application

within

a

debugger.

See

the

reference

l

page

for

the

ots_DumpState

function

for

additional

information.

©

Copyright

IBM

Corp.

1999,

2004

69

State

dumps

are

managed

by

the

Encina

Trace

Facility.

By

default,

output

from

a

state

dump

is

sent

to

an

internal

buffer

unless

you

redirect

the

output

to

another

destination.

See

the

Encina

Toolkit

Programming

Guide

for

more

information.

Error

and

warning

messages

Encina++

error

and

warning

messages

are

documented

in

Encina

Messages

and

Codes.

70

TXSeries™:

Encina

Object-Oriented

Programming

Guide

Appendix.

Compilation

issues

This

appendix

describes

the

header

files

and

library

files

required

for

compiling

C++

applications.

It

also

includes

information

on

compiler

and

linker

options

and

other

compilation

issues.

TIDL

and

IDL

compilation

This

section

describes

the

tasks

required

to

compile

the

interfaces

needed

for

Encina++

client

and

server

interaction.

Follow

these

steps

when

defining

an

interface

for

use

in

an

Encina++/DCE

application:

1.

Run

the

tidl

compiler.

Use

the

-ots

option

and

pass

the

transactional

interface

definition

language

(TIDL)

file

as

the

argument

to

the

command.

2.

Run

the

idl

compiler.

Use

the

-no_mepv

and

-cepv

options

and

pass

the

interface

definition

language

(IDL)

file

generated

by

the

tidl

command.

For

more

information

on

the

compilation

process

and

the

files

produced,

see

“Generating

stub

files”

on

page

19.

C++

header

and

library

files

Encina++

provides

header

files

and

libraries

for

use

with

C++

applications.

The

header

files

and

libraries

that

you

use

depend

on

the

requirements

of

your

application.

You

can

develop

applications

only

for

an

environment

that

uses

the

Distributed

Computing

Environment

(DCE)

Header

files

Encina++

header

files

Encina++

applications

must

include

the

appropriate

header

files

to

define

the

data

types,

classes,

functions,

macros,

and

constructs

that

are

used

in

Encina++

and

the

runtime

environment.

In

a

DCE-only

environment:

v

Client

and

server

applications

must

each

include

the

file

ots/dce/encina_dce.H.

This

header

file

automatically

includes

the

Tran-C++

classes,

macros,

and

constructs.

v

Applications

that

use

OTS

must

include

the

file

ots/omg/ots.H.

v

SFS++

applications

must

include

the

file

ots/pos/sfs++.H.

v

RQS++

applications

must

include

the

file

ots/pos/rqs++.H.

C

header

files

C++

uses

a

technique

called

name

mangling

to

make

the

names

of

overloaded

member

functions

unique.

To

prevent

name

mangling

of

C

function

names,

C

language

header

files

must

be

declared

as

extern

“C”

when

included

in

an

Encina++

application.

The

extern

“C”

declaration

is

required

only

for

non-Encina

C

header

files;

the

C

header

files

that

are

provided

with

Encina

use

declarations

that

are

compatible

with

Encina++.

©

Copyright

IBM

Corp.

1999,

2004

71

|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|
|

Library

files

Encina++

Libraries

Encina++

applications

must

link

with

the

appropriate

Encina

library

files.

Note:

Servers

that

also

act

as

clients

to

other

servers

must

link

with

the

libraries

that

are

listed

for

servers.

They

must

not

link

with

the

libraries

that

are

listed

for

clients.

Linking

with

both

client

and

server

libraries

can

result

in

unpredictable

behavior.

In

a

DCE-only

environment

v

Client

applications

must

link

with

the

following

libraries:

–

EncPlusCli

–

EncMonCli

–

Encina

v

Server

applications

must

link

with

the

following

libraries:

–

EncPlusServ

–

EncMonServ

–

EncServer

–

EncClient

–

Encina

v

SFS++

server

applications

must

also

link

with

the

EncPlusSfs

and

EncSfs

libraries.

For

more

information

on

SFS++,

see

Encina

RQS++

and

SFS++

Programming

Guide.

v

RQS++

server

applications

must

also

link

with

the

EncPlusRqs

and

EncRqs

libraries.

For

more

information

on

RQS++,

see

Encina

RQS++

and

SFS++

Programming

Guide.

v

No

additional

libraries

are

required

for

the

OTS

or

Tran-C++

interfaces.

DCE

libraries

On

most

platforms,

the

DCE

library

(dce)

must

be

explicitly

linked

with

Encina++/DCE

applications.

The

libraries

that

are

needed

for

various

platforms

are

shown

in

Table

4.

Table

4.

DCE

libraries

by

platform

Platform

Encina++

/

DCE

Solaris

2.x

dce,

m,

dl

HP-UX

dcekt

AIX

dce

Windows

libdce,

pthreads

Platform-specific

libraries

Additional

libraries

must

be

linked

with

the

application

code.

The

additional

libraries

depend

on

the

operating

system

and

machine

type.

The

libraries

that

are

needed

for

various

platforms

are

shown

in

Table

5.

Table

5.

Platform-specific

libraries

Platform

System

libraries

Solaris

2.x

nsl,

socket,

thread

HP-UX

ndbm,

M,

dld,

c_r

72

TXSeries™:

Encina

Object-Oriented

Programming

Guide

|

|

|
|
|
|

||

||

||

||

||

||
|

|

Table

5.

Platform-specific

libraries

(continued)

Platform

System

libraries

AIX

C_r,

c

Note:

Information

on

system

libraries

can

change

with

time.

For

the

most

current

information

about

system

libraries

for

the

platform

that

you

are

using,

see

the

release

notes

for

that

platform.

Also

refer

to

the

Makefile

that

is

installed

with

the

sample

Encina

applications.

Compiler

and

linker

options

Table

6

and

Table

7

list

platform-specific

compiler

and

linker

options

for

UNIX

platforms.

Table

8

lists

compiler

and

linker

flags

that

are

required

on

Windows

platforms.

This

information

can

change

with

time.

For

the

most

up-to-date

list,

see

the

Makefile

for

the

sample

Encina

applications

installed

as

part

of

Encina.

Table

6.

Platform-specific

compiler

options

for

UNIX

Platform

Additional

compiler

options

Solaris

2.x

-D_REENTRANT

HP-UX

-D_REENTRANT

-Aa

-D_HPUX_SOURCE

-Dhpux

-Dhp9000s800

+eh

-Dsigned=

AIX

-Dunix

-D_BSD

-D_ALL_SOURCE

Table

7.

Platform-specific

linker

options

for

UNIX

(HP-UX

only)

Platform

Additional

linker

options

HP-UX

+eh

Table

8.

Platform-specific

compiler

and

linker

options

for

Windows

Flags

Description

-MD

Uses

the

dynamically

linked

C

runtime

library.

-DWIN32

Defines

the

symbol

WIN32.

Note:

If

you

define

the

symbol

elsewhere

before

you

include

Encina

header

files,

you

can

omit

this

flag.

Note:

Most

Encina

header

files

declare

the

calling

convention

for

all

functions.

However,

on

Windows

platforms

you

must

specify

either

the

-Gz

or

the

-Gd

flag

for

some

DCE

and

Encina

functions,

including

IDL-

and

TIDL-generated

code.

These

requirements

will

be

removed

in

a

future

Encina

release.

Other

compilation

issues

This

section

describes

issues

related

to

compilation

for

consideration

when

developing

your

Encina++

applications.

Appendix.

Compilation

issues

73

Renaming

the

abort

macro

The

Tran-C++

abort

macro

(supported

for

backwards

compatibility

only)

cannot

be

used

in

an

application

that

also

uses

the

C

library

abort

function.

You

can

avoid

a

name

collision

between

these

two

functions

by

using

the

abortTran

macro

instead

of

abort.

Checking

for

runtime

errors

By

default,

the

Encina++

runtime

does

not

check

whether

an

application

uses

Tran-C++

constructs

and

macros

correctly;

checking

for

runtime

errors

of

this

type

degrades

the

performance

of

the

application.

If

a

construct

or

macro

is

used

incorrectly

(for

example,

the

abortTran

macro

is

called

outside

the

scope

of

a

transaction),

the

behavior

is

undefined,

and

execution

errors

typically

occur.

Runtime

checking,

however,

is

useful

during

the

development

of

an

application.

You

can

enable

Encina++

to

perform

runtime

checking

by

defining

the

flag

OTS_CHECK_MACRO_USAGE

when

compiling

your

application.

Defining

this

flag

causes

the

runtime

to

generate

a

fatal

error

when

an

incorrectly

used

construct

or

macro

is

encountered.

74

TXSeries™:

Encina

Object-Oriented

Programming

Guide

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

DOCUMENT

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OR

CONDITIONS

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

document.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

1999,

2004

75

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

ATTN:

Software

Licensing

11

Stanwix

Street

Pittsburgh,

PA

15222

U.S.A.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

International

Program

License

Agreement

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurements

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

may

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

If

you

are

viewing

this

information

softcopy,

the

photographs

and

color

illustrations

may

not

appear.

Trademarks

and

service

marks

The

following

terms

are

trademarks

or

registered

trademarks

of

the

IBM

Corporation

in

the

United

States,

other

countries,

or

both:

AIX

C-ISAM

CICS

CICS/400

CICS/6000®

CICS/ESA

CICS/MVS

CICS/VSE

Database

2™

DB2

76

TXSeries™:

Encina

Object-Oriented

Programming

Guide

DB2

Universal

Database™

DFS

Domino™

Encina

IBM

IMS™

Informix

Lotus®

MQSeries

MVS

MVS/ESA

Notes®

OS/2

RACF®

SecureWay

SupportPac™

System/390

TXSeries

VisualAge®

VTAM®

WebSphere®

Domino,

Lotus,

and

LotusScript

are

trademarks

or

registered

trademarks

of

Lotus

Development

Corporation

in

the

United

States,

other

countries,

or

both.

ActiveX,

Microsoft®,

Visual

Basic,

Visual

C++,

Visual

J++,

Visual

Studio,

Windows,

Windows

NT®,

and

the

Windows

95

logo

are

trademarks

or

registered

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

Java™

and

all

Java-based

trademarks

and

logos

are

trademarks

or

registered

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Pentium®

is

a

trademark

of

Intel™

Corporation

in

the

United

States,

other

countries,

or

both.

This

software

contains

RSA

encryption

code.

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

Notices

77

78

TXSeries™:

Encina

Object-Oriented

Programming

Guide

Index

A
abort

codes
comparing

in

Tran-C++

53

defining

in

Tran-C++

47

retrieving

in

Tran-C++

48

translating

in

Tran-C++

48

abort

macro

74

abort

reasons
defining

in

Tran-C++

50

formatting

in

Tran-C++

49

retrieving

in

Tran-C++

52,

61

Tran-C++

47

abort

strings
defining

in

Tran-C++

48

abortCheck

macro

46

abortCode

macro

48,

53

abortFormat

macro

53

aborting
transactions

in

OTS

56,

57

transactions

in

Tran-C++

46,

47,

52

AbortReason

class

50

abortReason

macro

48,

53

abortTran

macro

47,

74

abstract

server

class

24

abstract

server

stub

classes

18

administering
servers

in

Encina++

7

assigning
UUIDs

to

implementation

objects

26

B
binding

to

implementation

objects

in

Encina++/DCE

20

to

object

references

in

Encina++/DCE

20

to

remote

objects

in

Encina++

10

to

servers

in

Encina++/DCE

20

binding

methods
Encina++/DCE

17,

20

building
clients

in

Encina++/DCE

23

servers

in

Encina++/DCE

29

C
C

header

files
using

in

Encina++

71

C++
exceptions

15

catching
exceptions

in

Encina++

16

exceptions

in

Encina++/DCE

34

checking
transaction

status

in

OTS

58

client

proxy

objects

6,

10

Encina++/DCE

17,

20

client

stubs
classes

in

Encina++/DCE

18

client/object

programming

6

clients

(Encina++/DCE)
building

23

developing

23

starting

24

clients

(Encina++)
binding

to

remote

objects

10

developing

9

initializing

9

terminating

10

committing
transactions

in

OTS

56

transactions

in

Tran-C++

41

committing

or

rolling

back

a

transaction

59

comparing
abort

codes

in

Tran-C++

53

compiler

options

73

compiling
Encina++

applications

71

concrete

server

class

24

concrete

server

stub

classes

18

concurrency

7

concurrent

transactional

threads
creating

64

concurrent

transactions
Tran-C++

42

Control_ptr

type

58

creating
concurrent

subtransactions

in

Encina++

66

concurrent

transactional

threads

64

concurrent

transactions

in

Encina++

65

implementation

objects

in

Encina++

30

implementation

objects

in

Encina++/DCE

26

nontransactional

threads

63

server

objects

in

Encina++

12

stub

files

in

Encina++/DCE

19

subtransactions

in

OTS

56

Current

class

55

Current::begin

function

56

Current::commit

function

56

Current::get_status

function

58

Current::resume

function

58

Current::rollback

function

56,

57

Current::suspend

function

58

D
defining

abort

codes

in

Tran-C++

47

abort

reasons

in

Tran-C++

50

abort

strings

in

Tran-C++

48

exception

scope

in

Tran-C++

47

exceptions

in

Encina++/DCE

33

interfaces

in

Encina++/DCE

18

manager

functions

in

Encina++/DCE

24

defining

(continued)
transaction

contexts

in

OTS

55

transactional

operations

in

Encina++/DCE

19

deleting
global

instances

of

the

Encina::Server

class

15

global

instances

of

the

OtsServer

class

15

delimiting
transactions

in

OTS

40

detecting
aborts

in

Tran-C++

46

developing
clients

in

Encina++

9

clients

in

Encina++/DCE

23

servers

in

Encina++

11

servers

in

Encina++/DCE

24

distributed

objects

5

dumping
states

in

Encina++

69

E
encina_abortReason_t

data

type

49

ENCINA_MAX_STATUS_STRING_SIZE

constant

49

ENCINA_TPM_CELL

environment

variable

24

Encina::Client::Exit

function

10

Encina::Client::Initialize

function

9

Encina::Server

class

12,

15

Encina::Server::ConcurrencyMode

data

type

14

Encina::Server::Exit

function

14

Encina::Server::Initialize

function

13

Encina::Server::Listen

function

14

Encina::Server::RegisterRecoveryServices

function

13

Encina::Server::RegisterResource

function

12

Encina++

1

administering

servers

7

binding

to

remote

objects

10

catching

exceptions

16

compiling

applications

71

creating

concurrent

subtransactions

66

creating

concurrent

transactions

65

creating

implementation

objects

30

creating

server

objects

12

developing

clients

9

developing

servers

11

dumping

states

69

handling

errors

15

header

files

71

initializing

clients

9

initializing

servers

13

library

files

72

listening

for

RPCs

14

making

servers

recoverable

13

©

Copyright

IBM

Corp.

1999,

2004

79

Encina++

(continued)
setting

concurrency

modes

for

servers

14

terminating

clients

10

terminating

servers

14

throwing

exceptions

15

tracing

69

using

C

header

files

71

using

with

Monitor

2

Encina++/DCE

2

binding

methods

17,

20

binding

to

implementation

objects

20

binding

to

object

references

20

binding

to

servers

20

building

clients

23

building

servers

29

catching

exceptions

34

client

proxy

objects

17,

20

client

stub

classes

18

creating

implementation

objects

26

creating

stub

files

19

defining

exceptions

33

defining

interfaces

18

defining

manager

functions

24

defining

transactional

operations

19

developing

clients

23

developing

servers

24

exceptions

17

server

stub

classes

18

signal

handling

35

starting

clients

24

starting

servers

29

throwing

exceptions

22,

34

using

with

OTS

2,

55

EncinaMonitorClient::Initialize

function

9

EncinaMonitorServer::RegisterResource

function

12

errors
handling

in

OTS

40

runtime

in

Tran-C++

74

exceptions
catching

in

Encina++

16

catching

in

Encina++/DCE

34

defining

in

Encina++/DCE

33

defining

scope

in

Tran-C++

47

Encina++/DCE

17

handing

in

Encina++

15

throwing

in

Encina++

15

throwing

in

Encina++/DCE

22,

34

Tran-C++

52

exit

function

14

exiting
transactional

threads

65

explicit

transaction

model

55,

59

committing

or

rolling

back

a

transaction

59

extern

“C”

71

F
factory

objects

29

failures
isolating

in

Tran-C++

42

format

UUIDs

49

formatting
abort

reasons

in

Tran-C++

49

G
getCompletedTran

macro

45

getContainingTran

macro

45

getReason

macro

53

getTran

macro

45

H
header

files
Encina++

71

hybrid

transaction

model

55

I
IDL

(DCE)

19,

71

idl

command

19

implementation

objects

6

binding

to

in

Encina++/DCE

20

creating

in

Encina++

30

creating

in

Encina++/DCE

26

implicit

transaction

model

55

initializing
clients

in

Encina++

9

Monitor

application

servers

13

servers

in

Encina++

13

interfaces
defining

in

Encina++/DCE

18

J
joining

nontransactional

threads

63

transactional

threads

64

L
library

files
Encina++

72

linker

options

73

M
manager

functions
defining

in

Encina++/DCE

24

Monitor
using

with

Encina++

2

Monitor

application

servers
initializing

13

N
name

mangling

71

nested

transactions

42

nontransactional

threads

7

creating

63

joining

63

suspending

64

terminating

64

yielding

64

O
object

references

30

binding

to

in

Encina++/DCE

20

OMG

OTS

40,

55

onAbort

clause

41

onAnyException

clause

41

onCommit

clause

41

onException

clause

41

Orbix

2

OTS

1,

40

aborting

transactions

56,

57

checking

transaction

status

58

committing

transactions

56

creating

subtransactions

56

defining

transaction

contexts

55

delimiting

transactions

40

explicit

transaction

model

59

committing

or

rolling

back

a

transaction

59

handling

errors

40

implicit

transaction

model

55

resuming

transactions

58

starting

transactions

56

suspending

transactions

58

transaction

IDs

61

using

Encina++/DCE

2

using

with

Encina++/DCE

55

using

with

Tran-C++

61

OTS_CHECK_MACRO_USAGE

flag

74

ots_DumpState

function

69

ots_traceMask

variable

69

OtsBinding

class

20

OtsDceExceptions::UserException

class

33

OtsExceptions

class

15

OtsExceptions::Any

class

15

OtsInterfaceMgr

class

25

OtsServer

class

12

deleting

global

instances

15

P
platform-specific

library

files

72

Pthread

class

63

Pthread::Create

function

63

Pthread::Join

function

63

R
recoverable

servers
creating

in

Encina++

13

registerAbortFormatter

macro

50

registering
XA-compliant

resource

managers

12

resource

managers
registering

XA-compliant

12

resumeTran

construct

45

resuming
transactions

in

OTS

58

transactions

in

Tran-C++

45

retrieving
abort

codes

in

Tran-C++

48

abort

reasons

in

Tran-C++

52,

61

RPCs

5

RQS++

1

80

TXSeries™:

Encina

Object-Oriented

Programming

Guide

S
server

objects

14

server

stubs
classes

in

Encina++/DCE

18

servers

(Encina++/DCE)
binding

20

building

29

developing

24

starting

29

servers

(Encina++)
administering

7

creating

instances

12

developing

11

initializing

13

listening

for

RPCs

14

making

recoverable

13

terminating

14

SFS++

1

signals
handling

in

Encina++/DCE

35

starting
clients

in

Encina++/DCE

24

servers

in

Encina++/DCE

29

transactions

in

OTS

56

transactions

in

Tran-C++

41

states
dumping

in

Encina++

69

Status

data

type

58

stub

files
creating

in

Encina++/DCE

19

subtransactions
creating

concurrently

in

Encina++

66

creating

in

OTS

56

creating

in

Tran-C++

42

suspend

clause

44

suspending
nontransactional

threads

64

transactions

in

OTS

58

transactions

in

Tran-C++

44

system

library

files

72

T
terminating

clients

in

Encina++

10

nontransactional

threads

64

servers

in

Encina++

14

ThisPthread::Delay

function

64

ThisPthread::Exit

function

64,

65

ThisPthread::Yield

function

64

threads

63

nontransactional

7

transactional

7

throwing
exceptions

in

Encina++

15

exceptions

in

Encina++/DCE

22,

34

TIDL

17,

71

compiler

17

creating

stub

files

19

defining

interfaces

18

defining

transactional

operations

19

tidl

command

18,

19

Toolkit

applications

36

not

using

CDS

36

using

CDS

36

topLevel

construct

43

Trace

Facility

69

tracing
component-level

69

Encina++

69

masks

69

Tran-C++

1,

39

abort

reasons

47

aborting

transactions

47,

52

checking

transaction

status

46

comparing

abort

codes

53

concurrent

transactions

42

creating

subtransactions

42

defining

abort

codes

47

defining

abort

reasons

50

defining

abort

strings

48

defining

exception

scope

47

exceptions

52

formatting

abort

reasons

49

getting

transaction

IDs

45

isolating

failures

42

resuming

transactions

45

retrieving

abort

codes

48

retrieving

abort

reasons

52,

61

runtime

errors

74

suspending

transactions

44

transaction

IDs

61

translating

abort

codes

48

using

with

OTS

61

TranPthread

class

64

TranPthread::Create

function

64,

65

TranPthread::GetReason

function

66

TranPthread::Join

function

64

transaction

construct

41

onAbort

clause

41

onCommit

clause

41

suspend

clause

44

transaction

contexts
defining

in

OTS

55

transaction

IDs
getting

in

Tran-C++

45

OTS

61

Tran-C++

61

transaction

models

55

transaction

processing

7,

39

transactional

operations
defining

in

Encina++/DCE

19

transactional

threads

7

creating

concurrently

64

exiting

65

joining

64

TransactionRolledBack

class

56

transactions
aborting

in

OTS

56,

57

aborting

in

Tran-C++

47,

52

checking

status

in

OTS

58

checking

status

in

Tran-C++

46

committing

in

OTS

56

committing

in

Tran-C++

41

concurrent

in

Tran-C++

42

creating

concurrently

in

Encina++

65

delimiting

in

OTS

40

detecting

aborts

in

Tran-C++

46

resuming

in

OTS

58

resuming

in

Tran-C++

45

starting

in

OTS

56

starting

in

Tran-C++

41

suspending

in

OTS

58

transactions

(continued)
suspending

in

Tran-C++

44

translating
abort

codes

in

Tran-C++

48

transparent

binding

20

U
uuidgen

command

49

UUIDs
assigning

to

implementation

objects

26

X
XA

registering

compliant

resource

managers

12

Y
yielding

nontransactional

threads

64

Index

81

82

TXSeries™:

Encina

Object-Oriented

Programming

Guide

����

Printed

in

USA

SC09-4478-05

Sp
in
e

in
fo
rm
at
io
n:

 �
�

�

T
X

Se
rie

s™

En
ci

na

O
bj

ec
t-

O
ri

en
te

d

Pr
og

ra
m

m
in

g

G
ui

de

Ve
rs

io
n

5.
1

SC
09

-4
47

8-
05

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	Document organization
	Related information
	Conventions used in this book
	How to send your comments

	Chapter 1. What is Encina++?
	DCE support
	Client and server support interfaces
	Object-oriented access interfaces

	Client and server support
	C++ clients and servers

	Encina++ terminology

	Chapter 2. The Encina++ programming model
	Object-oriented distributed computing
	Client/object programming
	Communications
	Application initialization and management
	Transaction processing
	Transactional and nontransactional threads

	Chapter 3. Developing distributed applications
	Overview of application development
	Writing client applications
	Initializing a client application
	Binding to remote objects
	Terminating a client application

	Writing server applications
	Creating a server instance
	Registering resources
	Accessing relational databases
	Initializing a server
	Initializing a Monitor server

	Creating server objects
	Listening for RPCs
	Terminating a server

	Handling errors
	Throwing exceptions
	Catching exceptions

	Chapter 4. Developing Encina++/DCE applications
	Introduction to Encina++/DCE
	Defining the interface
	Using TIDL with Encina++
	Making operations transactional
	Generating stub files

	Binding to remote objects
	Developing client applications
	Building clients
	Running clients

	Developing server applications
	Implementing manager functions
	The server classes
	The manager functions

	Creating implementation objects
	Servers and objects in CDS

	Building servers
	Running servers

	Binding by object reference
	Writing the factory interface
	Writing functions to create and delete objects
	Supporting factories in the server program
	Supporting factories on the client

	Using exceptions in Encina++/DCE
	Defining exceptions
	Throwing exceptions
	Catching exceptions

	Signal handling
	Naming in Encina++ Toolkit applications
	Using Toolkit mode with CDS
	Using Toolkit mode without CDS

	Chapter 5. Transaction processing overview
	Introduction to Transactional-C++
	Introduction to the Encina Object Transaction Service
	Transaction-demarcation models
	Exceptions

	Chapter 6. Transaction processing with Transactional-C++
	Creating transactions
	Nesting transactions
	Suspending and resuming transactions
	Getting the identity of a transaction
	Checking transaction status
	Aborting transactions
	Using abort codes
	Using abort strings
	Formatting abort reasons
	Using AbortReason objects
	Using exceptions

	Getting information about aborted transactions

	Chapter 7. Transaction processing with OMG OTS for Encina++
	Using OTS in DCE
	Using the implicit model of transaction processing
	Beginning and ending transactions
	Nesting transactions
	Aborting transactions
	Suspending and resuming transactions
	Checking transaction status

	Using the explicit model of transaction processing
	Committing or rolling back a transaction
	Other functions for explicitly managing transactions

	Interactions between Tran-C++ and OTS interfaces

	Chapter 8. Using threads
	Using nontransactional threads
	Using transactional threads
	Creating concurrent transactional threads
	Creating concurrent transactions

	Chapter 9. Diagnostics
	Tracing applications
	Dumping the application state
	Error and warning messages

	Appendix. Compilation issues
	TIDL and IDL compilation
	C++ header and library files
	Header files
	Encina++ header files
	C header files

	Library files
	Encina++ Libraries
	DCE libraries
	Platform-specific libraries

	Compiler and linker options
	Other compilation issues
	Renaming the abort macro
	Checking for runtime errors

	Notices
	Trademarks and service marks

	Index

